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Why	healthcare?

• Healthcare	is	big	

• Healthcare	is	bad

• Healthcare	is	challenging
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US	healthcare:	The	COST	problem

Overall	spending:	3.8 trillion	dollars	(2014)

Top 10 most valuable companies combined
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US	healthcare:	The	COST	problem

Overall	spending:	3.8 trillion	dollars	(2014)
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US Healthcare Waste per year
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US Healthcare Quality Issue

• 200K to 400K preventable death per year

–Over 1000 per day

https://www.documentcloud.org/documents/781687-john-james-a-new-evidence-based-estimate-of.html#document/p1/a117333
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Healthcare	data	is	everywhere

Source	from	http://www.okilab.es/how-big-data-is-changing-healthcare/
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Healthcare	data	sources

10Weber,	Griffin	M.,	Kenneth	D.	Mandl,	and	Isaac	S.	Kohane.	2014.	“Finding	the	Missing	Link	for	Big	Biomedical	Data.”	
JAMA:	The	Journal	of	the	American	Medical	Association 311	(24):	2479–80.
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Why	deep	learning?	

• Speech recognition

• Computer vision

– Image Classification

– Video analysis

• Natural language processing

– Machine translation
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Recipes	for	deep	learning	success

Successful	deep	learning	
models

Parallel	
computing

Efficient	
algorithms

Big	Data
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Early Work on Deep Learning in Health Applications

Stacked Auto-encoder (SDA)
Computational phenotyping [Lasko et al.,
2013; Kale et al., 2014; Che et al., 2015;
Kale et al., 2015; Miotto et al., 2016]

Deep neural networks (DNNs)
Restricted Boltzmann machine (RBM)
Multi-layer perceptron (MLP)
Condition prediction [Dabek and Caban,
2015; Hammerla et al., 2015]

Recurrent neural networks (RNNs)
Long short-term memory (LSTM) Gated
recurrent unit (GRU)
Diagnosis/event prediction Lipton et al.
[2015]; Choi et al. [2016]
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Outline

1 Lecture 1: Data Sources and Health Care Problems
EHR and Claims Data
Medical Imaging Data
Continuous Time Series (EEG, ECG, ICU monitoring)
Clinical Notes

2 Lecture 2: Challenges and Solutions of DL for Health Care

3 Future Directions
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Doctor	AI:	Predicting	Clinical	Events	
via	Recurrent	Neural	Networks

Buzz	StewartAndy	SchuetzEdward	Choi Taha Bahadori

Choi,	Edward,	et	al.	2016.	“Doctor	AI:	Predicting	Clinical	Events	via	Recurrent	Neural	Networks.”	
In	Machine	Learning	for	Healthcare	Conference,	301–18.
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Do you want to be seen by a machine 

or a human for medical care?
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Can	machine	perform	similarly	as	
doctors	in	diagnosis?

Electronic	health	recordsMillions	patient	encounters
Doctor	AI
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Approach:	Recurrent	Neural	Network	
(RNN)

Time
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Disease	Progression	Modeling

Accuracy:
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

RNN	on	predicting	diagnoses	in	next	visit

0 10 20 30 40 50 60 70 80

last	visit

most	freq

logistic	regression

RNN

recall@30
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Generalize	RNN	model	from	one	
institution	to	another

Perform	better	when	warm	start	
the	existing	model

Perform	worse	when	cold-start		
from	random	 initialization	
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Summary:	Doctor	AI

• general & accurate model for many prediction tasks

• Can handle sequences of variable lengths

Time

Hypertension
ACE Inhibitors

Diabetes
Sulfonylureas

Coronary 
Atherosclerosis
Loop Diuretics

Coronary 
Atherosclerosis
Beta Blockers 

Cardio-selective
Coronary 

Atherosclerosis
Nitrates

x0 x1 x2 x3 x4

Congestive 
Heart Failure

Loop Diuretics

Diabetes
Sulfonylureas

Diabetes
Sulfonylureas

Coronary 
Atherosclerosis
Loop Diuretics

Patient X

Event	sequences

EHR	data

RNN	model

Choi,	Edward,	et	al.	2016.	“Doctor	AI:	Predicting	Clinical	Events	via	Recurrent	Neural	Networks.”	
In	Machine	Learning	for	Healthcare	Conference,	301–18.
https://github.com/mp2893/doctorai
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

USING	RECURRENT	NEURAL	NETWORK	MODELS	
FOR	EARLY	DETECTION	OF	HEART	FAILURE	ONSET

How	to	model	temporal	relations	in	the	EHR	data

Buzz	StewartAndy	SchuetzEdward	Choi

Edward	Choi,	Andy	Schuetz,	Walter	Stewart,	Jimeng	Sun.	Using	Recursive	Neural	Network	Models	for	Early	Detection	
of	Heart	Failure	Onset,	JAMIA	2016
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

MOTIVATIONS FOR EARLY DETECTION 
OF HEART FAILURE

Reduces cost and 

hospitalization.

Heart failure is 

a complex 

disease.

Improves 

existing clinical 

guidelines of HF 

prevention.

Early intervention 

can slow down 

disease progression.

Liu & Sun ICML2017 - Deep Health August 5, 2017 26 / 124



Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Temporal	model:	RNN

• xt: one-hot coded Dx, Rx, Proc at time t

• ht: hidden state at time t

• y: binary outcome of HF prediction

• T: total length of the medical codes

• Red box: a single unit of RNN

y

Logistic Regression

x0 xT-1 xT

h0 hT-1 hT

x1

h1

Liu & Sun ICML2017 - Deep Health August 5, 2017 27 / 124



Lecture 1: Data Sources and Health Care Problems EHR and Claims Data
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data
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• RNN	model	achieves	over	10%	improvement	on	AUC
• Data	rep.	(word2vec)	>	knowledge	rep.	(medical	groupers)
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Summary:	Recurrent	Neural	Network	(RNN)	for	
heart	failure	onset	prediction

Edward	Choi,	Andy	Schuetz,	Walter	Stewart,	Jimeng	Sun.	Using	Recursive	Neural	Network	Models	for	Early	Detection	
of	Heart	Failure	Onset,	JAMIA	2016

Temporal information matters for 

HF onset prediction
Data driven representation matters

Observation
Window

Diagnosis 
Date

Prediction 
Window

Index Date

Time

Heart failure onset can be predicted using EHR data
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

DEEP	LEARNING	SOLUTIONS	FOR	
CLASSIFYING	PATIENTS	ON	OPIOID	USE

Hongfang LiuZhengping Che Jennifer	St.	Sauver

89

Che et	al,	Deep	Learning	Solutions	for	Classifying	Patients	on	Opioid	UseZhengping
Che,	Jennifer	St.	Sauver,	Hongfang Liu,	and	Yan	Liu.	American	Medical	Informatics	
Assocation Annual	Symposium	(AMIA),	2017
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Deep Learning for Opioid Use Analysis

Opioid use study on datasets from the Rochester Epidemiology Project (REP)1

with more than 140k people

To extract and understand risk factors and
indicators for adverse opioid and opioid-related
events

To predict new opioid users and dependence
and recognize misuse on opioid analgesics

To provide health care providers with better
suggestions on pain medication prescriptions

http://rochesterproject.org/Liu & Sun ICML2017 - Deep Health August 5, 2017 33 / 124
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Our Framework

Cohort selection and group identification

More than 110 millions of medical
records in 2013-2016 are used
Patients are grouped into short-term,
long-term, and opioid-dependent users

Temporal feature processing

Records of diagnoses, procedures, and
prescriptions are mapped into different
coding systems via one-hot encoding
Sum-pooling and segmentation along
the temporal dimension is applied to
build the input matrix for each patient

Multilayer DNNs and LSTMs with ReLU
function are used for prediction.

[ICD-9 786.59, May/27/2003]
[ICD-10 K57.30, Aug/25/2006]
……

[ICD-9 89.01, Nov/16/2004]
[HCP 88173, Aug/25/2006]
……

[Med 817579, May/27/2003, 4 days]
[Med 6922, May/27/2003, 7 days]
……

DX Table PR Table RX Table
Raw Data

Feature Mapping

[CCS 102, May/27/2003]
[CCS 146, Aug/25/2006]
……

[CCS 227, Nov/16/2004]
[CCS 234, Aug/25/2006]
……

[C8834, May/27/2003, 4 days]
[C8762, May/27/2003, 7 days]
……

1-of-K Coding  + 
Temporal Sum-Pooling

A vector of length  (𝐷𝐷𝑋 + 𝐷𝑃𝑅 + 𝐷𝑅𝑋)

[1, 2, 0, … , 0, 0, 1, … , 3, 4, 0, … , 9, 0]

𝐷𝐷𝑋 = 284 features 𝐷𝑃𝑅 = 245 features 𝐷𝑅𝑋 = 307 features

A matrix of size  Tseg × (𝐷𝐷𝑋 + 𝐷𝑃𝑅 + 𝐷𝑅𝑋)
1, 1, 0, … , 0, 0, 0, … , 1, 4, 0, … , 7, 0
0, 1, 0, … , 0, 0, 1, … , 2, 0, 0, … , 2, 0

1-of-K Coding  + 
Temporal Segmentation

DNN 
Prediction 
Model

RNN 
Prediction 
Model

Prediction 𝑌𝑝𝑟𝑒𝑑 ∈ [0, 1] 𝑌𝑝𝑟𝑒𝑑 ∈ [0, 1]
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Empirical Evaluations

Deep learning models outperforms other baselines with similar model size

Classification comparisons on AUC score (auc) and kappa coefficient (κ)
Short-term / Long-term Long-term / Opioid-dependent

LR SVM RF DNN RNN LR SVM RF DNN RNN

auc 0.7323 0.7327 0.6936 0.7340 0.7536 0.6512 0.6429 0.6999 0.7279 0.7144

κ 0.1090 0.0885 0.1289 0.0756± 0.004 0.2076 0.1906 0.1821 0.2342 0.3006 0.2542

Most important features are selected by DNN models

Feature importance I are calculated from weights in all the layers in DNN

I = W[L]BN [L]
(
· · ·W[2]BN [2]

(
W[1]BN [1](1)

))
∈ R1×D

Top related feature categories and their corresponding scores
Short-term / Long-term Long-term / Opioid-dependent

Table Code Feature Name I Table Code Feature Name I

RX C8834 Opioid Analgesics 0.2287 RX C8834 Opioid Analgesics 0.7784

RX C8890 Amphetamine-like Stimulants −0.0843 DX CCS 661 Substance-related Disorders 0.6186

RX C8838 Non-opioid Analgesics 0.0802 PR CCS 182 Mammography −0.3481
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Lecture 1: Data Sources and Health Care Problems Medical Imaging Data

Outline

1 Lecture 1: Data Sources and Health Care Problems
EHR and Claims Data
Medical Imaging Data
Continuous Time Series (EEG, ECG, ICU monitoring)
Clinical Notes

2 Lecture 2: Challenges and Solutions of DL for Health Care

3 Future Directions
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Lecture 1: Data Sources and Health Care Problems Medical Imaging Data

Unstructured Imaging Data: Data

Automated classify skin lesions

Identify diabetic retinopathy severity

Identify breast cancer stage

1. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman 
R, Nelson PC, Mega JL, Webster DR. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy
in Retinal Fundus Photographs. JAMA.2016;316(22):2402-2410

2. A. Esteva, B. Kuprel, R.A. Novoa, J. Ko, S.M. Swetter, H.M. Blau , S. Thrun. Dermatologist-level classification of skin cancer with deep 
neural networks. Nature 542, 115–118 (2017)

3. Liu, Yun, Krishna Gadepalli, Mohammad Norouzi, George E. Dahl, Timo Kohlberger, Aleksey Boyko, Subhashini Venugopalan, et al. 
2017. “Detecting Cancer Metastases on Gigapixel Pathology Images.” arXiv [cs.CV]. arXiv. http://arxiv.org/abs/1703.02442.
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Lecture 1: Data Sources and Health Care Problems Medical Imaging Data

Unstructured Imaging Data: Task
Data

Training Model

New Data

Apply

Model
Prediction

results

Training

CNN DNN
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Lecture 1: Data Sources and Health Care Problems Medical Imaging Data

DNN for detecting diabetic retinopathy

Image based detection of diabetic retinopathy (JAMA 2016)

• Train deep neural networks to find diabetic retinopathy 
severity from the intensities of the pixels in a fundus 
image.
• Received testing AUC of 0.991 on EyePACS-1 data, and 

testing AUC of 0.990 on Messidor-2 data.

1. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman 
R, Nelson PC, Mega JL, Webster DR. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy
in Retinal Fundus Photographs. JAMA.2016;316(22):2402-2410
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Lecture 1: Data Sources and Health Care Problems Medical Imaging Data

.

Unstructured Imaging Data: skin lesion (Nature 2017)

• Deep convolutional neural networks to perform binary classification 
for two use cases: 
• keratinocyte carcinomas versus benign seborrheic keratosis; and 
• malignant melanomas versus benign nevi.

• Achieved better-than-human expert accuracy (0.7210 vs. 0.6556)

1. A. Esteva, B. Kuprel, R.A. Novoa, J. Ko, S.M. Swetter, H.M. Blau , S. Thrun. Dermatologist-level classification of skin cancer with deep 
neural networks. Nature 542, 115–118 (2017)
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Lecture 1: Data Sources and Health Care Problems Medical Imaging Data

.
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Lecture 1: Data Sources and Health Care Problems Continuous Time Series (EEG, ECG, ICU monitoring)

Outline

1 Lecture 1: Data Sources and Health Care Problems
EHR and Claims Data
Medical Imaging Data
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EEG Data
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2 Lecture 2: Challenges and Solutions of DL for Health Care

3 Future Directions
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Lecture 1: Data Sources and Health Care Problems Continuous Time Series (EEG, ECG, ICU monitoring)

SLEEPNET:	Automated	Sleep	
Medicine	via	Deep	Learning

Siddharth Biswal, Joshua Kulas, Haoqi Sun, Balaji

Goparaju, M Brandon Westover, Matt T Bianchi, 

Jimeng Sun

https://arxiv.org/abs/1707.08262
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Lecture 1: Data Sources and Health Care Problems Continuous Time Series (EEG, ECG, ICU monitoring)

Motivation:	Automated	sleep	
medicine

• ~50-70million people in US currently suffer sleep disorders 

• Central diagnostic tool is the overnight sleep study, Polysomnogram (PSG)

• Labor intensive effort to annotating PSG

– Automation of these could alleviate these concerns

Polysomnogram (PSG)	recording
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Lecture 1: Data Sources and Health Care Problems Continuous Time Series (EEG, ECG, ICU monitoring)

Sleep	staging

• EEG data in PSG consists of data from 6 different channels

• Every 30 second of EEG were annotated into one of 5 stages

– Sleep stages are important for many sleep quality metrics

• Annotation is nontrivial even for experienced technologists

– Inter rater agreement rate about 70%

Input Data Output
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Lecture 1: Data Sources and Health Care Problems Continuous Time Series (EEG, ECG, ICU monitoring)

Analytic	pipeline	of	SLEEPNET	

39
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Lecture 1: Data Sources and Health Care Problems Continuous Time Series (EEG, ECG, ICU monitoring)

Dataset	Description

>9	millionNumber	of	labeled	samples
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Lecture 1: Data Sources and Health Care Problems Continuous Time Series (EEG, ECG, ICU monitoring)

Results

RNN	+	expert	defined	features	perform	the	best
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Lecture 1: Data Sources and Health Care Problems Continuous Time Series (EEG, ECG, ICU monitoring)

Algorithm achieves expert-level 

performance (avg. accuracy > 85%)

Confusion	matrix	for	the	best	performing	model	(RNN+expert)
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Lecture 1: Data Sources and Health Care Problems Continuous Time Series (EEG, ECG, ICU monitoring)

Summary:	SLEEPNET

43

Automated Sleep staging

based on deep learning

Large dataset of 10,000 

polysomnogram studies

Deployed for 

research

https://arxiv.org/abs/1707.08262
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Lecture 1: Data Sources and Health Care Problems Continuous Time Series (EEG, ECG, ICU monitoring)

INTERPRETABLE	DEEP	MODELS	FOR	ICU	
OUTCOME	PREDICTION

Robinder KhemaniZhengping Che Sanjay	Purushotham

91
Che et	al,	Interpretable	Deep	Models	for	ICU	Outcome	Prediction.	of	the	American	
Medical	Informatics	Association	Annual	Symposium	(AMIA),	2016.
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Lecture 1: Data Sources and Health Care Problems Continuous Time Series (EEG, ECG, ICU monitoring)

Time Series in Critical Care Unit (ICU)

Critical care is among the most important areas of medicine.

>5 million patients admitted to US ICUs annually.2

Cost: $81.7 billion in US in 2005: 13.4% hospital costs, ∼1% GDP.1

Mortality rates up to 30%, depending on condition, care, age.1

Long-term impact: physical impairment, pain, depression.

Society of Critical Care Medicine website, Statistics page.
Liu & Sun ICML2017 - Deep Health August 5, 2017 53 / 124
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Lecture 1: Data Sources and Health Care Problems Continuous Time Series (EEG, ECG, ICU monitoring)

Datasets and Tasks

Children’s Hospital Los Angeles (CHLA)
398 patients stay > 3 days
Static features (age, weight, etc.): 27 variables
Temporal features (Blood gas, ventilator signals,injury markers, etc.): 21
variables
MIMIC III Dataset
19714 patients stay for 2 days
All temporal features (input fluids, output fluids, lab tests, prescription):
99 variables
PhysioNet Challenge Part of MIMIC II dataset

Task Prediction task (mortality, ventilator free days, and disease code),
computational phenotyping, anomaly detection, disease subtyping
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Lecture 1: Data Sources and Health Care Problems Continuous Time Series (EEG, ECG, ICU monitoring)

Deep learning model: DNN + GRU
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Lecture 1: Data Sources and Health Care Problems Continuous Time Series (EEG, ECG, ICU monitoring)

Experiment Results
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Lecture 1: Data Sources and Health Care Problems Clinical Notes

Outline

1 Lecture 1: Data Sources and Health Care Problems
EHR and Claims Data
Medical Imaging Data
Continuous Time Series (EEG, ECG, ICU monitoring)
Clinical Notes

2 Lecture 2: Challenges and Solutions of DL for Health Care

3 Future Directions
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Lecture 1: Data Sources and Health Care Problems Clinical Notes

Deep Neural Networks for Analyzing Clinical Notes

Examples of some recent development:

LSTM for i2b2/VA relation classification challenge [Luo, 2017]

Convolutional neural networks for medical text classification [Hughes
et al., 2017]

Bidirectional RNN for medical event detection [Jagannatha and Yu,
2016]

RNN with attention for adverse drug reaction [Pandey et al., 2017]

Condensed memory networks for clinical diagnostic Inferencing
[Prakash et al., 2016]

Neural attention models for classification of radiology reports [Shin
et al., 2017]
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Lecture 2: Challenges and Solutions of DL for Health Care Deep Dive of Health Care Data

Outline

1 Lecture 1: Data Sources and Health Care Problems

2 Lecture 2: Challenges and Solutions of DL for Health Care
Deep Dive of Health Care Data
Challenge 1 - Big Small Data
Challenge 2 - Missing Data
Challenge 3 - Incorporation of Domain Knowledge
Challenge 4 - Interpretable Machine Learning

3 Future Directions
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Lecture 2: Challenges and Solutions of DL for Health Care Deep Dive of Health Care Data

Example of Health Care Data
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Lecture 2: Challenges and Solutions of DL for Health Care Deep Dive of Health Care Data

Machine	learning	challenges	
for	health	applications

Small sample size

• Rare	diseases
• Small	clinics

Interpretation

• Explain	the	prediction

Missing value

Medical domain knowledge

• Medical	ontology

Liu & Sun ICML2017 - Deep Health August 5, 2017 61 / 124



Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data

Outline

1 Lecture 1: Data Sources and Health Care Problems

2 Lecture 2: Challenges and Solutions of DL for Health Care
Deep Dive of Health Care Data
Challenge 1 - Big Small Data
Challenge 2 - Missing Data
Challenge 3 - Incorporation of Domain Knowledge
Challenge 4 - Interpretable Machine Learning

3 Future Directions
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data

VARIATIONAL RECURRENT	ADVERSARIAL	
DEEP	DOMAIN	ADAPTATION

Tanachat NilanonSanjay	Purushotham Wilka Carvalho

88

Purushotham et	al,	Variational Recurrent	Adversarial	Deep	Domain	Adaptation.	
International	Conference	on	Learning	Representations	(ICLR	2017)	
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data

Motivation - Big Small Data

Limited amount of data available to train age-specific or
disease-specific models

A toy example: predicting mortality across adults and children in ICU
Target Model Trained on Adults Model trained on Children

Children 0.56 0.70

Training models for each age group independently is not ideal due to
limited amount of data

Question: How do we adapt models from Adults (source domain) to
Children (target domain)?
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data

Problem Formulation

Case study: mortality prediction for patients across different age groups

Input: N multivariate time series example: xi = (xit)
T i
t=1

Source domain (e.g. adult): {xi, yi}ni=1, target domain (e.g., child):
{xj}Nj=n+1

Output: mapping function f target(xi) ≈ yi
Problem definition: unsupervised domain adaptation for multivariate
time series
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data

Related Work

Domain adaption for non-time series data

Domain discrepancy reduction [Ben-David et al., 2007]

Instance re-weighting [Jiang and Zhai, 2007]

Subspace alignment [Fernando et al., 2013]

Deep learning approaches [Ganin and Lempitsky, 2014; Tzeng et al.,
2015], domain adversarial neural networks (DANN) [Ganin et al.,
2016]

Domain adaption for sequence or time series data

Dynamic Bayes networks [Huang and Yates, 2009]

Recurrent neural networks [Socher et al., 2011]

Our solution:
Deep learning model with adversarial training and variational methods for
domain invariant representation while transferring temporal dependencies
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data

Variational Adversarial Deep Domain Adaptation
(VADDA) [ICLR 2017]

VRNN objective function [Chung et al, 2016]

Lr(xit; θe, θg) = Eqθe (zi≤Ti |x
i
≤Ti

)

T i∑

t=1

(−D(qθe(z
i
t|xi≤t, zi<t)||p(zit|xi<t, zi<t))+log pθg(x

i
t|zi≤t, xi<t))

Source classification loss with regularizer

min
θe,θg ,θy

1

n

n∑

i=1

1

T i
Lr(xi; θe, θg)+

1

n

n∑

i=1

Ly(xi; θy, θe)+λR(θe)

Domain regularizer [Ganin et al, 2016]

R(θe) = max
θd

[
− 1

n

n∑

i=1

Ld(xi; θd, θe)−
1

n′

N∑

i=n+1

Ld(xi; θd, θe)
]

Overall Objective function

E(θe, θg, θy, θd) =
1

N

N∑

i=1

1

T i
Lr(xi; θe, θg)+

1

n

n∑

i=1

Ly(xi; θy)−λ(
1

n

n∑

i=1

Ld(xi; θd)+
1

n′

N∑

i=n+1

Ld(xi; θd)))
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data

Experiments

Case Study: Acute Hypoxemic Respiratory Failure

Datasets
Pediatric ICU: Child-AHRF

398 patients at Children’s Hospital Los Angeles (CHLA) Group 1:
children (0-19 yrs)

MIMIC-III : Adult-AHRF

5527 patients Group 2: working-age adult (20 to 45 yrs); Group 3: old
working-age adult (46 to 65 yrs, Group 4: elderly (66 to 85 yrs); Group
5: old elderly (> 85 yrs)

Input features - 21 time series variables (e.g., blood gas, ventilator
signals, injury markers, etc.) for 4 days

Prediction tasks - Mortality label
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data

Classification Accuracy

Baselines:

Non-domain adaptation: Logistic regression, Adaboost, Deep Neural
Networks
Deep Domain adaptation: DANN, R-DANN, VFAE [Louizos et al,
2015])

Source-Target LR Adaboost DNN DANN VFAE R-DANN VRDDA
3- 2 0.555 0.562 0.569 0.572 0.615 0.603 0.654
4- 2 0.624 0.645 0.569 0.589 0.635 0.584 0.656
5- 2 0.527 0.554 0.551 0.540 0.588 0.611 0.616
2- 3 0.627 0.621 0.550 0.563 0.585 0.708 0.724
4- 3 0.681 0.636 0.542 0.527 0.722 0.821 0.770
5- 3 0.655 0.706 0.503 0.518 0.608 0.769 0.782
2- 4 0.585 0.591 0.530 0.560 0.582 0.716 0.777
3- 4 0.652 0.629 0.531 0.527 0.697 0.769 0.764
5- 4 0.689 0.699 0.538 0.532 0.614 0.728 0.738
2- 5 0.565 0.543 0.549 0.526 0.555 0.659 0.719
3- 5 0.576 0.587 0.510 0.526 0.533 0.630 0.721
4- 5 0.682 0.587 0.575 0.548 0.712 0.747 0.775

5- 1 0.502 0.573 0.557 0.563 0.618 0.563 0.639
4- 1 0.565 0.533 0.572 0.542 0.668 0.577 0.636
3- 1 0.500 0.500 0.542 0.535 0.570 0.591 0.631
2- 1 0.520 0.500 0.534 0.559 0.578 0.630 0.637

VADDA mostly outperforms all domain adaptation and non-domain adaptation
models
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data

Domain-invariant Representations

t-SNE projections for the latent representations for domain adaptation from Adult-AHRF to
Child-AHRF

VADDA has better distribution mixing than DANN
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data

Temporal Dependencies across Domains

Memory cell state neuron activations of the R-DANN and VADDA

Activation patterns of VADDA are more consistent across time-steps than for
R-DANN
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 2 - Missing Data

Outline

1 Lecture 1: Data Sources and Health Care Problems

2 Lecture 2: Challenges and Solutions of DL for Health Care
Deep Dive of Health Care Data
Challenge 1 - Big Small Data
Challenge 2 - Missing Data
Challenge 3 - Incorporation of Domain Knowledge
Challenge 4 - Interpretable Machine Learning

3 Future Directions
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 2 - Missing Data

RECURRENT	NEURAL	NETWORKS	FOR	
MULTIVARIATE	TIME	SERIES	WITH	
MISSING	VALUES

David	SontagKyunghyun ChoZhengping Che Sanjay	Purushotham

87
Che et	al,	Recurrent	Neural	Networks	for	Multivariate	Time	Series	with	Missing	
Values.	arXiv:1606.01865	
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 2 - Missing Data

Missing Values are Useful

Missingness comes from various reasons.

Missingness provides rich information about patients health condition.
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 2 - Missing Data

Time-Series Inputs with Missing Values

Given time series data with missing values X, we have two representations
for missingness.

Masking M:
Whether a variable is missing or not.

Time Interval ∆:
How long a variable has been missing.

There exist three solutions with no modification on the predictive models.

Mean imputation of missing values (Mean)

Forward imputation of missing values (Forward)

Simple concatenation of indicators (Simple)
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 2 - Missing Data

Deep Learning Models for Time-Series with Missing Values

Mean: Replacing each missing observation by the mean of the variable x̃
across the training examples [Shao et al., 2009].

xdt ← md
tx

d
t + (1−md

t )x̃
d

Forward: Assuming each missing value is the same as its last measurement
xt′ and using forward imputation [Unnebrink and Windeler, 2001].

xdt ← md
tx

d
t + (1−md

t )x
d
t′

Simple: Concatenating the measurement x, masking m, and/or time
interval δ.

Similar ideas are used in RNN models: [Choi et al., 2015](x and time
t), Pham et al. [2016](x and δ), and [Lipton et al., 2016](x and m).

x
(n)
t ←

[
x
(n)
t ;m

(n)
t ; δ

(n)
t

]
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 2 - Missing Data

GRU-R [Che et al., 2016a]

Decay Term γ: A flexible transformation on ∆ jointly learned with deep
model.

γt = exp{−ReLU(Wγδt + bγ)}
GRU-D model

Decay on the last observations:

xdt ← md
tx
d
t + (1−md

t )γx
d
tx
d
t′ + (1−md

t )(1− γxdt )x̃
d

Decay on the hidden states:

ht−1 ← γht � ht−1

𝒉 ෩𝒉

𝒛

IN

OUT

𝒙
𝒎𝒓

MASK
𝜸𝒉

𝜸𝒙

The update functions for GRU are:

zt = σ (Wzxt +Uzht−1 + Vzmt + bz)rt = σ (Wrxt +Urht−1 + Vrmt + br)

h̃t = tanh (Wxt +U(rt � ht−1) + Vmt + b)ht = (1− zt)� ht−1 + zt � h̃t
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 2 - Missing Data

Empirical Evaluation

Evaluations on synthetic dataset

with different missing rates

0.6

0.7

0.8

0.9

1

0 0.2 0.5 0.8

GRU-mean GRU-forward

GRU-simple GRU-D

Evaluations for mortality early

prediction

0.69

0.75

0.81

0.87

12 18 24 30 36 42 48

GRU-mean GRU-forward
GRU-simple GRU-D
SVM-simple RF-simple

AUC score on mortality prediction

Models MIMIC-III PhysioNet

Non-
RNN

LR-forward 0.7589 0.7423

SVM-forward 0.7908 0.8131

RF-forward 0.8293 0.8183

LR-simple 0.7715 0.7625

SVM-simple 0.8146 0.8277

RF-simple 0.8294 0.8157

RNN

LSTM-mean 0.8142 0.8025

GRU-mean 0.8192 0.8195

GRU-forward 0.8252 0.8162

GRU-simple 0.8380 0.8155

Ours GRU-D 0.8527 0.8424
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 2 - Missing Data

Empirical Evaluation

Input decay plots of all 33 variables for mortality prediction on PhysioNet dataset

6: Cholesterol
mr: 0.9989

27: TroponinI
mr: 0.9984

28: TroponinT
mr: 0.9923

3: Albumin
mr: 0.9915

0: ALP
mr: 0.9888

1: ALT
mr: 0.9885

2: AST
mr: 0.9885

5: Bilirubin
mr: 0.9884

16: Lactate
mr: 0.9709

24: SaO2
mr: 0.9705

30: WBC
mr: 0.9532

11: Glucose
mr: 0.9528

19: Na
mr: 0.9508

18: Mg
mr: 0.9507

12: HCO3
mr: 0.9507

4: BUN
mr: 0.9496

7: Creatinine
mr: 0.9493

22: Platelets
mr: 0.9489

15: K
mr: 0.9477

13: HCT
mr: 0.9338

21: PaO2
mr: 0.9158

20: PaCO2
mr: 0.9157

32: pH
mr: 0.9118

9: FiO2
mr: 0.883

23: RespRate
mr: 0.8053

10: GCS
mr: 0.7767

26: Temp
mr: 0.6915

31: Weight
mr: 0.5452

29: Urine
mr: 0.5095

17: MAP
mr: 0.2141

8: DiasABP
mr: 0.2054

25: SysABP
mr: 0.2052

14: HR
mr: 0.1984

Get a few important variables, e.g., weight, arterial pH, temperature, and
respiration rate, etc.

Histograms of of hidden state decay for mortality prediction on PhysioNet dataset

101

102

6: Cholesterol
mr: 0.9989

27: TroponinI
mr: 0.9984

28: TroponinT
mr: 0.9923

3: Albumin
mr: 0.9915

0: ALP
mr: 0.9888

1: ALT
mr: 0.9885

2: AST
mr: 0.9885

5: Bilirubin
mr: 0.9884

16: Lactate
mr: 0.9709

24: SaO2
mr: 0.9705

30: WBC
mr: 0.9532

101

102

11: Glucose
mr: 0.9528

19: Na
mr: 0.9508

18: Mg
mr: 0.9507

12: HCO3
mr: 0.9507

4: BUN
mr: 0.9496

7: Creatinine
mr: 0.9493

22: Platelets
mr: 0.9489

15: K
mr: 0.9477

13: HCT
mr: 0.9338

21: PaO2
mr: 0.9158

20: PaCO2
mr: 0.9157

0.3 0.3

101

102

32: pH
mr: 0.9118

0.3 0.3

9: FiO2
mr: 0.883

0.3 0.3

23: RespRate
mr: 0.8053

0.3 0.3

10: GCS
mr: 0.7767

0.3 0.3

26: Temp
mr: 0.6915

0.3 0.3

31: Weight
mr: 0.5452

0.3 0.3

29: Urine
mr: 0.5095

0.3 0.3

17: MAP
mr: 0.2141

0.3 0.3

8: DiasABP
mr: 0.2054

0.3 0.3

25: SysABP
mr: 0.2052

0.3 0.3

14: HR
mr: 0.1984

Parameters related to variables with smaller missing rate are more spread out.
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge

Outline

1 Lecture 1: Data Sources and Health Care Problems

2 Lecture 2: Challenges and Solutions of DL for Health Care
Deep Dive of Health Care Data
Challenge 1 - Big Small Data
Challenge 2 - Missing Data
Challenge 3 - Incorporation of Domain Knowledge
Challenge 4 - Interpretable Machine Learning

3 Future Directions
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge

DEEP	COMPUTATIONAL	PHENOTYPING

Wenzhe LiZhengping Che David	Kale

90

Che et	al,	Deep	Computational	Phenotyping.	Proceedings	of	the	21st	ACM	SIGKDD	
Conference	on	Knowledge	Discovery	and	Data	Mining	(SIGKDD),	2015.

Taha Bahadori
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge

Label Sparsity and Structured Domain Knowledge

Many diagnoses occur in < 1% of patients.
How do we handle sparsity in our labels?

Ontologies (e.g., ICD-9 diagnostic codes) describe relationships between
diseases.
How can we incorporate (structured) domain knowledge?

Solution: Multi-task net + Graph Laplacian regularization.

Labels 

𝜷3 𝜷1 

𝑦1 𝑦2 𝑦3 

𝑥1 𝑥2 𝑥3 𝑥4 
Inputs 

𝑾 

Respiratory 

Pneumonia  Infections … 

Cardiovascular 

 Rheumatic 

Fever 

Coronary 

artery 

Disease 

… 

Our solutions

Tree-based
priors

Co-occurrence
priors
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge

Multi-task Neural Nets + Graph Laplacian Regularization
[Che et al., 2015]

Assume:

K outputs (labels) with parameters {βk}Kk=1, βk ∈ RD(L)

Label similarity matrix A ∈ RK×K where Aij ∈ [0, 1].

Define Graph Laplacian matrix L = C −A with C a diagonal matrix
Ckk =

∑K
k′=1Akk′ , then

tr(β>Lβ) =
∑

1≤k,k′≤K
Ak,k′‖βk − βk′‖22

where tr(·) represents the trace operator.

Regularized loss function for supervised training of multi-task neural
network:

L = −
N∑

i=1

K∑

k=1

[
yik log σ(β

>
k hi) + (1− yik) log(1− σ(β>k hi))

]
+
ρ

2
tr(β>Lβ)
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge

Experiment Results

Impact of priors on phenotype classification

PICU data (AUROC across 67 labels and 19 categories from ICD-9 codes)
Tasks No Prior Co-Occurrence ICD-9 Tree

Subsequence
All 0.7079± 0.0089 0.7169± 0.0087 0.7143± 0.0066
Categories 0.6758± 0.0078 0.6804± 0.0109 0.6710± 0.0070
Labels 0.7148± 0.0114 0.7241± 0.0093 0.7237± 0.0081

Episode
All 0.7245± 0.0077 0.7348± 0.0064 0.7316± 0.0062
Categories 0.6952± 0.0106 0.7010± 0.0136 0.6902± 0.0118
Labels 0.7308± 0.0099 0.7414± 0.0064 0.7407± 0.0070
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge

MED2VEC:	MULTI-LAYER REPRESENTATION 
LEARNING FOR MEDICAL CONCEPTS

E. Choi, M. T. Bahadori, E. Searles, C. Coffey, M. Thompson, J. Bost, J. 

Tejedor-Sojo, J. Sun, (2016) 

Multi-layer Representation Learning for Medical Concepts

KDD’16
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge

Med2Vec:	two-layered	representation	
learning

Cough

Visit 1

Fever

Fever

Visit 2

Chill Fever

Visit 3

Pneumonia

Chest X-ray

Tylenol

IV fluid

• Abstraction in patient records
2.	Sequential	relation

1.	Co-occurrence	

• Objective function: the sum of

1. Negative intra-visit Skip-gram 

• Because Skip-gram objective function is to be 

maximized

2. Inter-visit multi-label classification loss
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Med2Vec encoding is well aligned with medical knowledge
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medical	codes	leveraging	medical	

ontologies
• Method: Generate a medical code representation vector 

by combining the representation vectors of its ancestors 

using the attention mechanism
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Figure 2: Unfolded view of RETAIN’s architecture: Given input sequence x1, . . . ,xi, we predict the
label yi. Step 1: Embedding, Step 2: generating ↵ values using RNN↵, Step 3: generating � values
using RNN�, Step 4: Generating the context vector using attention and representation vectors, and
Step 5: Making prediction. Note that in Steps 2 and 3 we use RNN in the reversed time.

where gi 2 Rp is the hidden layer of RNN↵ at time step i, hi 2 Rq the hidden layer of RNN�

at time step i and w↵ 2 Rp, b↵ 2 R,W� 2 Rm⇥q and b� 2 Rm are the parameters to learn.
The hyperparameters p and q determine the hidden layer size of RNN↵ and RNN�, respectively.
Note that for prediction at each timestamp, we generate a new set of attention vectors ↵ and �. For
simplicity of notation, we do not include the index for predicting at different time steps. In Step 2,
we can use Sparsemax [28] instead of Softmax for sparser attention weights.

As noted, RETAIN generates the attention vectors by running the RNNs backward in time; i.e., RNN↵

and RNN� both take the visit embeddings in a reverse order vi,vi�1, . . . ,v1. Running the RNN
in reversed time order also offers computational advantages since the reverse time order allows us
to generate e’s and �’s that dynamically change their values when making predictions at different
time steps i = 1, 2, . . . , T . This ensures that the attention vectors are modified at each time step,
increasing the computational stability of the attention generation process.1

Using the generated attentions, we obtain the context vector ci for a patient up to the i-th visit as
follows,

ci =

iX

j=1

↵j�j � vj , (Step 4)

where � denotes element-wise multiplication. We use the context vector ci 2 Rm to predict the true
label yi 2 {0, 1}s as follows,

byi = Softmax(Wci + b), (Step 5)
where W 2 Rs⇥m and b 2 Rs are parameters to learn. We use the cross-entropy to calculate the
classification loss as follows,

L(x1, . . . ,xT ) = � 1

N

NX

n=1

1

T (n)

T (n)X

i=1

⇣
y>

i log(byi) + (1� yi)
> log(1� byi)

⌘
(1)

where we sum the cross entropy errors from all dimensions of byi. In case of real-valued output
yi 2 Rs, we can change the cross-entropy in Eq. (1) to, for example, mean squared error.

Overall, our attention mechanism can be viewed as the inverted architecture of the standard attention
mechanism for NLP [2] where the words are encoded by RNN and the attention weights are generated
by MLP. In contrast, our method uses MLP to embed the visit information to preserve interpretability
and uses RNN to generate two sets of attention weights, recovering the sequential information as
well as mimicking the behavior of physicians. Note that we did not use the timestamp of each visit
in our formulation. Using timestamps, however, provides a small improvement in the prediction
performance. We propose a method to use timestamps in Appendix A.

1For example, feeding visit embeddings in the original order to RNN↵ and RNN� will generate the same e1

and �1 for every time step i = 1, 2, . . . , T . Moreover, in many cases, a patient’s recent visit records deserve
more attention than the old records. Then we need to have ej+1 > ej which makes the process computationally
unstable for long sequences.
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Step 5: Making prediction. Note that in Steps 2 and 3 we use RNN in the reversed time.
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simplicity of notation, we do not include the index for predicting at different time steps. In Step 2,
we can use Sparsemax [28] instead of Softmax for sparser attention weights.
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follows,
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Overall, our attention mechanism can be viewed as the inverted architecture of the standard attention
mechanism for NLP [2] where the words are encoded by RNN and the attention weights are generated
by MLP. In contrast, our method uses MLP to embed the visit information to preserve interpretability
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at time step i and w↵ 2 Rp, b↵ 2 R,W� 2 Rm⇥q and b� 2 Rm are the parameters to learn.
The hyperparameters p and q determine the hidden layer size of RNN↵ and RNN�, respectively.
Note that for prediction at each timestamp, we generate a new set of attention vectors ↵ and �. For
simplicity of notation, we do not include the index for predicting at different time steps. In Step 2,
we can use Sparsemax [28] instead of Softmax for sparser attention weights.
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to generate e’s and �’s that dynamically change their values when making predictions at different
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follows,

ci =

iX

j=1

↵j�j � vj , (Step 4)

where � denotes element-wise multiplication. We use the context vector ci 2 Rm to predict the true
label yi 2 {0, 1}s as follows,
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mechanism for NLP [2] where the words are encoded by RNN and the attention weights are generated
by MLP. In contrast, our method uses MLP to embed the visit information to preserve interpretability
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where gi 2 Rp is the hidden layer of RNN↵ at time step i, hi 2 Rq the hidden layer of RNN�

at time step i and w↵ 2 Rp, b↵ 2 R,W� 2 Rm⇥q and b� 2 Rm are the parameters to learn.
The hyperparameters p and q determine the hidden layer size of RNN↵ and RNN�, respectively.
Note that for prediction at each timestamp, we generate a new set of attention vectors ↵ and �. For
simplicity of notation, we do not include the index for predicting at different time steps. In Step 2,
we can use Sparsemax [28] instead of Softmax for sparser attention weights.

As noted, RETAIN generates the attention vectors by running the RNNs backward in time; i.e., RNN↵

and RNN� both take the visit embeddings in a reverse order vi,vi�1, . . . ,v1. Running the RNN
in reversed time order also offers computational advantages since the reverse time order allows us
to generate e’s and �’s that dynamically change their values when making predictions at different
time steps i = 1, 2, . . . , T . This ensures that the attention vectors are modified at each time step,
increasing the computational stability of the attention generation process.1

Using the generated attentions, we obtain the context vector ci for a patient up to the i-th visit as
follows,

ci =
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↵j�j � vj , (Step 4)

where � denotes element-wise multiplication. We use the context vector ci 2 Rm to predict the true
label yi 2 {0, 1}s as follows,

byi = Softmax(Wci + b), (Step 5)
where W 2 Rs⇥m and b 2 Rs are parameters to learn. We use the cross-entropy to calculate the
classification loss as follows,
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where we sum the cross entropy errors from all dimensions of byi. In case of real-valued output
yi 2 Rs, we can change the cross-entropy in Eq. (1) to, for example, mean squared error.

Overall, our attention mechanism can be viewed as the inverted architecture of the standard attention
mechanism for NLP [2] where the words are encoded by RNN and the attention weights are generated
by MLP. In contrast, our method uses MLP to embed the visit information to preserve interpretability
and uses RNN to generate two sets of attention weights, recovering the sequential information as
well as mimicking the behavior of physicians. Note that we did not use the timestamp of each visit
in our formulation. Using timestamps, however, provides a small improvement in the prediction
performance. We propose a method to use timestamps in Appendix A.

1For example, feeding visit embeddings in the original order to RNN↵ and RNN� will generate the same e1

and �1 for every time step i = 1, 2, . . . , T . Moreover, in many cases, a patient’s recent visit records deserve
more attention than the old records. Then we need to have ej+1 > ej which makes the process computationally
unstable for long sequences.

4

GRAM algorithm

Attention weights are generated for all pairs of basic embeddings 𝐞* and its ancestors 𝐞2.

Final representation 𝐠* is the weighted sum of attention weights and basic embeddings.

Sequence of visit representations are obtained using the Embedding matrix G.

Performing sequential diagnoses prediction, outcomes are generated by RNN and 
Softmax.

of the code c j and �i j 2 R+ the attention weight on the embedding
ej when calculating gi . The attention weight �i j in Eq. (1) is
calculated by the following Softmax function,

�i j =
exp(f (ei , ej ))Õ

k 2A(i) exp(f (ei , ek ))
(2)

f (ei , ej ) is a scalar value representing the compatibility between
the basic embeddings of ei and ek . We compute f (ei , ej ) via the
following feed-forward network with a single hidden layer (MLP),

f (ei , ej ) = u>a tanh(Wa


ei
ej

�
+ ba ) (3)

where Wa 2 Rl⇥2m is the weight matrix for the concatenation of
ei and ej , b 2 Rl the bias vector, and ua 2 Rl the weight vector for
generating the scalar value. The constant l represents the dimen-
sion size of the hidden layer of f (·, ·). We concatenate ei and ej in
the child-ancestor order. Note that the compatibility function f is
an MLP, because MLP is well known to be a su�cient approximator
for an arbitrary function, and we empirically found that our formu-
lation performed better in our use cases than alternatives such as
inner product and Bahdanau et al.’s [2].
Remarks: The example in Figure 1 is derived based on a single
path from ci to ca . However, the same mechanism can be applicable
to multiple paths as well. For example, code ck has two paths to
the root ca , containing �ve ancestors in total. Another scenario
is where the EHR data contain both leaf codes and some ancestor
codes. We can move those ancestors present in EHR data from the
set C0 to C and apply the same process as Eq. (1) to obtain the �nal
representations for them.

2.3 End-to-End Training with a Predictive
Model

We train the attention mechanism together with a predictive model
such that the attention mechanism improves the predictive perfor-
mance. By concatenating �nal representation g1, g2, . . . , g |C | of all
medical codes, we have the embedding matrix G 2 Rm⇥ |C | where
gi is the i-th column of G. As shown in the right side of Figure 1,
we can convert a visitVt to a visit representation vt by multiplying
the embedding matrix G with a multi-hot (i.e. multi-label binary)
vector xt indicating the clinical events in the visit Vt , followed by
a nonlinear activation via tanh. Finally the visit representation vt
will be used as an input to the neural network model for predicting
the target label yt . In this work, we use RNN as the choice of the
NN model to perform sequential diagnoses prediction [9, 10]. That
is, we are interested in predicting the disease codes of the next visit
Vt+1 given the visit records up to the current timestepV1,V2, . . . ,Vt ,
which can be expressed as follows,

v1, v2, . . . , vt = tanh(G[x1, x2, . . . , xt ]),
h1, h2, . . . , ht = RNN(v1, v2, . . . , vt ,�r ), (4)

byt = bxt+1 = So�max(Wht + b),

where xt 2 R |C | denotes the multi-hot vector for the t-th visit;
vt 2 Rm the t-th visit representation; ht 2 Rr the RNN’s hidden
layer at the t-th time step (i.e. t-th visit); �r RNN’s parameters;
W 2 R |C |⇥r and b 2 R |C | the weight matrices and the bias vector
of the �nal Softmax function (r denotes the dimension size of the

Algorithm 1 GRAM Optimization
Randomly initialize basic embedding matrix E, attention param-
eters ua ,Wa , ba , RNN parameter �r , softmax parameters W, b.

repeat
Update E with GloVe objective function (see Section 2.4)

until convergence
repeat

X random patient from dataset
for visit Vt in X do

for code ci in Vt do
Refer G to �nd ci ’s ancestors C 0
for code c j in C 0 do

Calculate attention weight �i j using Eq. (2).
end for
Obtain �nal representation gi using Eq. (1).

end for
vt  tanh(Õi :ci 2Vt gi )
Make predictionbyt using Eq. (4)

end for
Calculate prediction loss L using Eq .(5)
Update parameters according to the gradient of L

until convergence

hidden layer). Note that we use Softmax instead of dimension-
wise sigmoid for predicting multiple disease codes in the next visit
Vt+1 because it showed better performance. Here we use “RNN” to
denote any recurrent neural network variants that can cope with
the vanishing gradient problem [3], such as LSTM [18], GRU [8],
and IRNN [21]. The prediction loss for all time steps is calculated
using the binary cross entropy as follows,

L(x1, x2 . . . , xT ) = � 1
T � 1

T�1’
t=1

⇣
yt
> log(byt )+ (1�yt )> log(1�byt )

⌘
(5)

where we sum the cross entropy errors from all timestamps ofbyt ,T
denotes the number of timestamps of the visit sequence. Note that
the above loss is de�ned for a single patient. In actual implemen-
tation, we will take the average of the individual loss for multiple
patients. Algorithm 1 describes the overall GRAM training proce-
dure assuming that we are performing the sequential diagnoses
prediction task using an RNN. Note that Algorithm 1 describes
stochastic gradient update to avoid clutter, but it can be easily ex-
tended to other gradient based optimization such as mini-batch
gradient update.

2.4 Initializing Basic Embeddings
The attention generation mechanism in Section 2.2 requires basic
embeddings ei of each node in the knowledge DAG. The basic
embeddings of ancestors, however, are not usually observed in the
data. To properly initialize them, we use co-occurrence information
to learn the basic embeddings of medical codes and their ancestors.
Co-occurrence has proven to be an important source of information
when learning representations of words or medical concepts [11,
13, 27]. To train the basic embeddings, we employ GloVe [31],
which uses the global co-occurrence matrix of words to learn their
representations. In our case, the co-occurrence matrix of the codes

of the code c j and �i j 2 R+ the attention weight on the embedding
ej when calculating gi . The attention weight �i j in Eq. (1) is
calculated by the following Softmax function,

�i j =
exp(f (ei , ej ))Õ

k 2A(i) exp(f (ei , ek ))
(2)

f (ei , ej ) is a scalar value representing the compatibility between
the basic embeddings of ei and ek . We compute f (ei , ej ) via the
following feed-forward network with a single hidden layer (MLP),

f (ei , ej ) = u>a tanh(Wa


ei
ej

�
+ ba ) (3)

where Wa 2 Rl⇥2m is the weight matrix for the concatenation of
ei and ej , b 2 Rl the bias vector, and ua 2 Rl the weight vector for
generating the scalar value. The constant l represents the dimen-
sion size of the hidden layer of f (·, ·). We concatenate ei and ej in
the child-ancestor order. Note that the compatibility function f is
an MLP, because MLP is well known to be a su�cient approximator
for an arbitrary function, and we empirically found that our formu-
lation performed better in our use cases than alternatives such as
inner product and Bahdanau et al.’s [2].
Remarks: The example in Figure 1 is derived based on a single
path from ci to ca . However, the same mechanism can be applicable
to multiple paths as well. For example, code ck has two paths to
the root ca , containing �ve ancestors in total. Another scenario
is where the EHR data contain both leaf codes and some ancestor
codes. We can move those ancestors present in EHR data from the
set C0 to C and apply the same process as Eq. (1) to obtain the �nal
representations for them.

2.3 End-to-End Training with a Predictive
Model

We train the attention mechanism together with a predictive model
such that the attention mechanism improves the predictive perfor-
mance. By concatenating �nal representation g1, g2, . . . , g |C | of all
medical codes, we have the embedding matrix G 2 Rm⇥ |C | where
gi is the i-th column of G. As shown in the right side of Figure 1,
we can convert a visitVt to a visit representation vt by multiplying
the embedding matrix G with a multi-hot (i.e. multi-label binary)
vector xt indicating the clinical events in the visit Vt , followed by
a nonlinear activation via tanh. Finally the visit representation vt
will be used as an input to the neural network model for predicting
the target label yt . In this work, we use RNN as the choice of the
NN model to perform sequential diagnoses prediction [9, 10]. That
is, we are interested in predicting the disease codes of the next visit
Vt+1 given the visit records up to the current timestepV1,V2, . . . ,Vt ,
which can be expressed as follows,

v1, v2, . . . , vt = tanh(G[x1, x2, . . . , xt ]),
h1, h2, . . . , ht = RNN(v1, v2, . . . , vt ,�r ), (4)

byt = bxt+1 = So�max(Wht + b),

where xt 2 R |C | denotes the multi-hot vector for the t-th visit;
vt 2 Rm the t-th visit representation; ht 2 Rr the RNN’s hidden
layer at the t-th time step (i.e. t-th visit); �r RNN’s parameters;
W 2 R |C |⇥r and b 2 R |C | the weight matrices and the bias vector
of the �nal Softmax function (r denotes the dimension size of the

Algorithm 1 GRAM Optimization
Randomly initialize basic embedding matrix E, attention param-
eters ua ,Wa , ba , RNN parameter �r , softmax parameters W, b.

repeat
Update E with GloVe objective function (see Section 2.4)

until convergence
repeat

X random patient from dataset
for visit Vt in X do

for code ci in Vt do
Refer G to �nd ci ’s ancestors C 0
for code c j in C 0 do

Calculate attention weight �i j using Eq. (2).
end for
Obtain �nal representation gi using Eq. (1).

end for
vt  tanh(Õi :ci 2Vt gi )
Make predictionbyt using Eq. (4)

end for
Calculate prediction loss L using Eq .(5)
Update parameters according to the gradient of L

until convergence

hidden layer). Note that we use Softmax instead of dimension-
wise sigmoid for predicting multiple disease codes in the next visit
Vt+1 because it showed better performance. Here we use “RNN” to
denote any recurrent neural network variants that can cope with
the vanishing gradient problem [3], such as LSTM [18], GRU [8],
and IRNN [21]. The prediction loss for all time steps is calculated
using the binary cross entropy as follows,

L(x1, x2 . . . , xT ) = � 1
T � 1

T�1’
t=1

⇣
yt
> log(byt )+ (1�yt )> log(1�byt )

⌘
(5)

where we sum the cross entropy errors from all timestamps ofbyt ,T
denotes the number of timestamps of the visit sequence. Note that
the above loss is de�ned for a single patient. In actual implemen-
tation, we will take the average of the individual loss for multiple
patients. Algorithm 1 describes the overall GRAM training proce-
dure assuming that we are performing the sequential diagnoses
prediction task using an RNN. Note that Algorithm 1 describes
stochastic gradient update to avoid clutter, but it can be easily ex-
tended to other gradient based optimization such as mini-batch
gradient update.

2.4 Initializing Basic Embeddings
The attention generation mechanism in Section 2.2 requires basic
embeddings ei of each node in the knowledge DAG. The basic
embeddings of ancestors, however, are not usually observed in the
data. To properly initialize them, we use co-occurrence information
to learn the basic embeddings of medical codes and their ancestors.
Co-occurrence has proven to be an important source of information
when learning representations of words or medical concepts [11,
13, 27]. To train the basic embeddings, we employ GloVe [31],
which uses the global co-occurrence matrix of words to learn their
representations. In our case, the co-occurrence matrix of the codes

where

Figure 1: The illustration of GRAM. Leaf nodes (solid circles) represents a medical concept in the EHR, while the non-leaf nodes
(dotted circles) represent more general concepts. The �nal representation gi of the leaf concept ci is computed by combining the
basic embeddings ei of ci and e� , ec and ea of its ancestors c� , cc and ca via an attention mechanism. The �nal representations
form the embedding matrix G for all leaf concepts. After that, we use G to embed patient visit vector xt to a visit representation
vt , which is then fed to a neural network model to make the �nal prediction ŷt .
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We compare predictive performance (i.e. accuracy, data needs,
interpretability) of GRAM to various models including the recurrent
neural network (RNN) in two sequential diagnoses prediction tasks
and one heart failure (HF) prediction task. We demonstrate that
GRAM is up to 10% more accurate than the basic RNN for predicting
diseases less observed in the training data. After discussing GRAM’s
scalability, we visualize the representations learned from various
models, where GRAM provides more intuitive representations by
grouping similar medical concepts close to one another. Finally, we
show GRAM’s attention mechanism can be interpreted to understand
how it assigns the right amount of attention to the ancestors of
each medical concept by considering the data availability and the
ontology structure.

2 METHODOLOGY
We �rst de�ne the notations describing EHR data and medical
ontologies, followed by a description of GRAM (Section 2.2), the end-
to-end training of the attention generation and predictive modeling
(Section 2.3), and the e�cient initialization scheme (Section 2.4).

2.1 Basic Notation
We denote the set of entire medical codes from the EHR as c1, c2, . . . ,
c |C | 2 C with the vocabulary size |C|. The clinical record of each
patient can be viewed as a sequence of visits V1, . . . ,VT where
each visit contains a subset of medical codes Vt ✓ C. Vt can be
represented as a binary vector xt 2 {0, 1} |C | where the i-th element
is 1 only if Vt contains the code ci . To avoid clutter, all algorithms
will be presented for a single patient.

We assume that a given medical ontology G typically expresses
the hierarchy of various medical concepts in the form of a parent-
child relationship, where the medical codes C form the leaf nodes.
Ontology G is represented as a directed acyclic graph (DAG) whose
nodes form a set D = C + C0. The set C0 = {c |C |+1, c |C |+2, . . . ,
c |C |+ |C0 | } consists of all non-leaf nodes (i.e. ancestors of the leaf
nodes), where |C0 | represents the number of all non-leaf nodes. We

use knowledge DAG to refer to G. A parent in the knowledge DAG
G represents a related but more general concept over its children.
Therefore, G provides a multi-resolution view of medical concepts
with di�erent degrees of speci�city. While some ontologies are
exclusively expressed as parent-child hierarchies (e.g. ICD-9, CCS),
others are not. For example, in some instances SNOMED-CT also
links medical concepts to causal or treatment relationships, but a
majority of the relationships in SNOMED-CT are still parent-child.
Therefore, we focus on the parent-child relationships in this work.

2.2 Knowledge DAG and the Attention
Mechanism

GRAM leverages the parent-child relationship of G to learn robust
representations when data volume is constrained. GRAM balances
the use of ontology information in relation to data volume in de-
termining the level of speci�city for a medical concept. When a
medical concept is less frequent in the data, more weight is given
to its ancestors as they can be learned more accurately and o�er
general (coarse-grained) information about their children. The pro-
cess of resorting to the parent concepts can be automated via the
attention mechanism and the end-to-end training as described in
Figure 1.

In the knowledge DAG, each node ci is assigned a basic em-
bedding vector ei 2 Rm , where m represents the dimensionality.
Then e1, . . . , e |C | are the basic embeddings of the codes c1, . . . , c |C |
while e |C |+1, . . . , e |C |+ |C0 | represent the basic embeddings of the
internal nodes c |C |+1, . . . , c |C |+ |C0 | . The initialization of these ba-
sic embeddings is described in Section 2.4. We formulate a leaf
node’s �nal representation as a convex combination of the basic
embeddings of itself and its ancestors:

gi =
’

j 2A(i)
�i j ej ,

’
j 2A(i)

�i j = 1, �i j � 0 for j 2 A(i), (1)

where gi 2 Rm denotes the �nal representation of the code ci , A(i)
the indices of the code ci and ci ’s ancestors, ej the basic embedding

of the code c j and �i j 2 R+ the attention weight on the embedding
ej when calculating gi . The attention weight �i j in Eq. (1) is
calculated by the following Softmax function,

�i j =
exp(f (ei , ej ))Õ

k 2A(i) exp(f (ei , ek ))
(2)

f (ei , ej ) is a scalar value representing the compatibility between
the basic embeddings of ei and ek . We compute f (ei , ej ) via the
following feed-forward network with a single hidden layer (MLP),

f (ei , ej ) = u>a tanh(Wa


ei
ej

�
+ ba ) (3)

where Wa 2 Rl⇥2m is the weight matrix for the concatenation of
ei and ej , b 2 Rl the bias vector, and ua 2 Rl the weight vector for
generating the scalar value. The constant l represents the dimen-
sion size of the hidden layer of f (·, ·). We concatenate ei and ej in
the child-ancestor order. Note that the compatibility function f is
an MLP, because MLP is well known to be a su�cient approximator
for an arbitrary function, and we empirically found that our formu-
lation performed better in our use cases than alternatives such as
inner product and Bahdanau et al.’s [2].
Remarks: The example in Figure 1 is derived based on a single
path from ci to ca . However, the same mechanism can be applicable
to multiple paths as well. For example, code ck has two paths to
the root ca , containing �ve ancestors in total. Another scenario
is where the EHR data contain both leaf codes and some ancestor
codes. We can move those ancestors present in EHR data from the
set C0 to C and apply the same process as Eq. (1) to obtain the �nal
representations for them.

2.3 End-to-End Training with a Predictive
Model

We train the attention mechanism together with a predictive model
such that the attention mechanism improves the predictive perfor-
mance. By concatenating �nal representation g1, g2, . . . , g |C | of all
medical codes, we have the embedding matrix G 2 Rm⇥ |C | where
gi is the i-th column of G. As shown in the right side of Figure 1,
we can convert a visitVt to a visit representation vt by multiplying
the embedding matrix G with a multi-hot (i.e. multi-label binary)
vector xt indicating the clinical events in the visit Vt , followed by
a nonlinear activation via tanh. Finally the visit representation vt
will be used as an input to the neural network model for predicting
the target label yt . In this work, we use RNN as the choice of the
NN model to perform sequential diagnoses prediction [9, 10]. That
is, we are interested in predicting the disease codes of the next visit
Vt+1 given the visit records up to the current timestepV1,V2, . . . ,Vt ,
which can be expressed as follows,

v1, v2, . . . , vt = tanh(G[x1, x2, . . . , xt ]),
h1, h2, . . . , ht = RNN(v1, v2, . . . , vt ,�r ), (4)

byt = bxt+1 = So�max(Wht + b),

where xt 2 R |C | denotes the multi-hot vector for the t-th visit;
vt 2 Rm the t-th visit representation; ht 2 Rr the RNN’s hidden
layer at the t-th time step (i.e. t-th visit); �r RNN’s parameters;
W 2 R |C |⇥r and b 2 R |C | the weight matrices and the bias vector
of the �nal Softmax function (r denotes the dimension size of the

Algorithm 1 GRAM Optimization
Randomly initialize basic embedding matrix E, attention param-
eters ua ,Wa , ba , RNN parameter �r , softmax parameters W, b.

repeat
Update E with GloVe objective function (see Section 2.4)

until convergence
repeat

X random patient from dataset
for visit Vt in X do

for code ci in Vt do
Refer G to �nd ci ’s ancestors C 0
for code c j in C 0 do

Calculate attention weight �i j using Eq. (2).
end for
Obtain �nal representation gi using Eq. (1).

end for
vt  tanh(Õi :ci 2Vt gi )
Make predictionbyt using Eq. (4)

end for
Calculate prediction loss L using Eq .(5)
Update parameters according to the gradient of L

until convergence

hidden layer). Note that we use Softmax instead of dimension-
wise sigmoid for predicting multiple disease codes in the next visit
Vt+1 because it showed better performance. Here we use “RNN” to
denote any recurrent neural network variants that can cope with
the vanishing gradient problem [3], such as LSTM [18], GRU [8],
and IRNN [21]. The prediction loss for all time steps is calculated
using the binary cross entropy as follows,

L(x1, x2 . . . , xT ) = � 1
T � 1

T�1’
t=1

⇣
yt
> log(byt )+ (1�yt )> log(1�byt )

⌘
(5)

where we sum the cross entropy errors from all timestamps ofbyt ,T
denotes the number of timestamps of the visit sequence. Note that
the above loss is de�ned for a single patient. In actual implemen-
tation, we will take the average of the individual loss for multiple
patients. Algorithm 1 describes the overall GRAM training proce-
dure assuming that we are performing the sequential diagnoses
prediction task using an RNN. Note that Algorithm 1 describes
stochastic gradient update to avoid clutter, but it can be easily ex-
tended to other gradient based optimization such as mini-batch
gradient update.

2.4 Initializing Basic Embeddings
The attention generation mechanism in Section 2.2 requires basic
embeddings ei of each node in the knowledge DAG. The basic
embeddings of ancestors, however, are not usually observed in the
data. To properly initialize them, we use co-occurrence information
to learn the basic embeddings of medical codes and their ancestors.
Co-occurrence has proven to be an important source of information
when learning representations of words or medical concepts [11,
13, 27]. To train the basic embeddings, we employ GloVe [31],
which uses the global co-occurrence matrix of words to learn their
representations. In our case, the co-occurrence matrix of the codes

of the code c j and �i j 2 R+ the attention weight on the embedding
ej when calculating gi . The attention weight �i j in Eq. (1) is
calculated by the following Softmax function,

�i j =
exp(f (ei , ej ))Õ

k 2A(i) exp(f (ei , ek ))
(2)

f (ei , ej ) is a scalar value representing the compatibility between
the basic embeddings of ei and ek . We compute f (ei , ej ) via the
following feed-forward network with a single hidden layer (MLP),

f (ei , ej ) = u>a tanh(Wa
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where Wa 2 Rl⇥2m is the weight matrix for the concatenation of
ei and ej , b 2 Rl the bias vector, and ua 2 Rl the weight vector for
generating the scalar value. The constant l represents the dimen-
sion size of the hidden layer of f (·, ·). We concatenate ei and ej in
the child-ancestor order. Note that the compatibility function f is
an MLP, because MLP is well known to be a su�cient approximator
for an arbitrary function, and we empirically found that our formu-
lation performed better in our use cases than alternatives such as
inner product and Bahdanau et al.’s [2].
Remarks: The example in Figure 1 is derived based on a single
path from ci to ca . However, the same mechanism can be applicable
to multiple paths as well. For example, code ck has two paths to
the root ca , containing �ve ancestors in total. Another scenario
is where the EHR data contain both leaf codes and some ancestor
codes. We can move those ancestors present in EHR data from the
set C0 to C and apply the same process as Eq. (1) to obtain the �nal
representations for them.

2.3 End-to-End Training with a Predictive
Model

We train the attention mechanism together with a predictive model
such that the attention mechanism improves the predictive perfor-
mance. By concatenating �nal representation g1, g2, . . . , g |C | of all
medical codes, we have the embedding matrix G 2 Rm⇥ |C | where
gi is the i-th column of G. As shown in the right side of Figure 1,
we can convert a visitVt to a visit representation vt by multiplying
the embedding matrix G with a multi-hot (i.e. multi-label binary)
vector xt indicating the clinical events in the visit Vt , followed by
a nonlinear activation via tanh. Finally the visit representation vt
will be used as an input to the neural network model for predicting
the target label yt . In this work, we use RNN as the choice of the
NN model to perform sequential diagnoses prediction [9, 10]. That
is, we are interested in predicting the disease codes of the next visit
Vt+1 given the visit records up to the current timestepV1,V2, . . . ,Vt ,
which can be expressed as follows,

v1, v2, . . . , vt = tanh(G[x1, x2, . . . , xt ]),
h1, h2, . . . , ht = RNN(v1, v2, . . . , vt ,�r ), (4)

byt = bxt+1 = So�max(Wht + b),

where xt 2 R |C | denotes the multi-hot vector for the t-th visit;
vt 2 Rm the t-th visit representation; ht 2 Rr the RNN’s hidden
layer at the t-th time step (i.e. t-th visit); �r RNN’s parameters;
W 2 R |C |⇥r and b 2 R |C | the weight matrices and the bias vector
of the �nal Softmax function (r denotes the dimension size of the

Algorithm 1 GRAM Optimization
Randomly initialize basic embedding matrix E, attention param-
eters ua ,Wa , ba , RNN parameter �r , softmax parameters W, b.

repeat
Update E with GloVe objective function (see Section 2.4)

until convergence
repeat

X random patient from dataset
for visit Vt in X do

for code ci in Vt do
Refer G to �nd ci ’s ancestors C 0
for code c j in C 0 do

Calculate attention weight �i j using Eq. (2).
end for
Obtain �nal representation gi using Eq. (1).

end for
vt  tanh(Õi :ci 2Vt gi )
Make predictionbyt using Eq. (4)

end for
Calculate prediction loss L using Eq .(5)
Update parameters according to the gradient of L

until convergence

hidden layer). Note that we use Softmax instead of dimension-
wise sigmoid for predicting multiple disease codes in the next visit
Vt+1 because it showed better performance. Here we use “RNN” to
denote any recurrent neural network variants that can cope with
the vanishing gradient problem [3], such as LSTM [18], GRU [8],
and IRNN [21]. The prediction loss for all time steps is calculated
using the binary cross entropy as follows,

L(x1, x2 . . . , xT ) = � 1
T � 1

T�1’
t=1

⇣
yt
> log(byt )+ (1�yt )> log(1�byt )

⌘
(5)

where we sum the cross entropy errors from all timestamps ofbyt ,T
denotes the number of timestamps of the visit sequence. Note that
the above loss is de�ned for a single patient. In actual implemen-
tation, we will take the average of the individual loss for multiple
patients. Algorithm 1 describes the overall GRAM training proce-
dure assuming that we are performing the sequential diagnoses
prediction task using an RNN. Note that Algorithm 1 describes
stochastic gradient update to avoid clutter, but it can be easily ex-
tended to other gradient based optimization such as mini-batch
gradient update.

2.4 Initializing Basic Embeddings
The attention generation mechanism in Section 2.2 requires basic
embeddings ei of each node in the knowledge DAG. The basic
embeddings of ancestors, however, are not usually observed in the
data. To properly initialize them, we use co-occurrence information
to learn the basic embeddings of medical codes and their ancestors.
Co-occurrence has proven to be an important source of information
when learning representations of words or medical concepts [11,
13, 27]. To train the basic embeddings, we employ GloVe [31],
which uses the global co-occurrence matrix of words to learn their
representations. In our case, the co-occurrence matrix of the codes
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Figure 2: Unfolded view of RETAIN’s architecture: Given input sequence x1, . . . ,xi, we predict the
label yi. Step 1: Embedding, Step 2: generating ↵ values using RNN↵, Step 3: generating � values
using RNN�, Step 4: Generating the context vector using attention and representation vectors, and
Step 5: Making prediction. Note that in Steps 2 and 3 we use RNN in the reversed time.

where gi 2 Rp is the hidden layer of RNN↵ at time step i, hi 2 Rq the hidden layer of RNN�

at time step i and w↵ 2 Rp, b↵ 2 R,W� 2 Rm⇥q and b� 2 Rm are the parameters to learn.
The hyperparameters p and q determine the hidden layer size of RNN↵ and RNN�, respectively.
Note that for prediction at each timestamp, we generate a new set of attention vectors ↵ and �. For
simplicity of notation, we do not include the index for predicting at different time steps. In Step 2,
we can use Sparsemax [28] instead of Softmax for sparser attention weights.

As noted, RETAIN generates the attention vectors by running the RNNs backward in time; i.e., RNN↵

and RNN� both take the visit embeddings in a reverse order vi,vi�1, . . . ,v1. Running the RNN
in reversed time order also offers computational advantages since the reverse time order allows us
to generate e’s and �’s that dynamically change their values when making predictions at different
time steps i = 1, 2, . . . , T . This ensures that the attention vectors are modified at each time step,
increasing the computational stability of the attention generation process.1

Using the generated attentions, we obtain the context vector ci for a patient up to the i-th visit as
follows,

ci =

iX

j=1

↵j�j � vj , (Step 4)

where � denotes element-wise multiplication. We use the context vector ci 2 Rm to predict the true
label yi 2 {0, 1}s as follows,

byi = Softmax(Wci + b), (Step 5)
where W 2 Rs⇥m and b 2 Rs are parameters to learn. We use the cross-entropy to calculate the
classification loss as follows,

L(x1, . . . ,xT ) = � 1

N

NX

n=1

1

T (n)

T (n)X

i=1

⇣
y>

i log(byi) + (1� yi)
> log(1� byi)

⌘
(1)

where we sum the cross entropy errors from all dimensions of byi. In case of real-valued output
yi 2 Rs, we can change the cross-entropy in Eq. (1) to, for example, mean squared error.

Overall, our attention mechanism can be viewed as the inverted architecture of the standard attention
mechanism for NLP [2] where the words are encoded by RNN and the attention weights are generated
by MLP. In contrast, our method uses MLP to embed the visit information to preserve interpretability
and uses RNN to generate two sets of attention weights, recovering the sequential information as
well as mimicking the behavior of physicians. Note that we did not use the timestamp of each visit
in our formulation. Using timestamps, however, provides a small improvement in the prediction
performance. We propose a method to use timestamps in Appendix A.

1For example, feeding visit embeddings in the original order to RNN↵ and RNN� will generate the same e1

and �1 for every time step i = 1, 2, . . . , T . Moreover, in many cases, a patient’s recent visit records deserve
more attention than the old records. Then we need to have ej+1 > ej which makes the process computationally
unstable for long sequences.
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Figure 2: Unfolded view of RETAIN’s architecture: Given input sequence x1, . . . ,xi, we predict the
label yi. Step 1: Embedding, Step 2: generating ↵ values using RNN↵, Step 3: generating � values
using RNN�, Step 4: Generating the context vector using attention and representation vectors, and
Step 5: Making prediction. Note that in Steps 2 and 3 we use RNN in the reversed time.

where gi 2 Rp is the hidden layer of RNN↵ at time step i, hi 2 Rq the hidden layer of RNN�

at time step i and w↵ 2 Rp, b↵ 2 R,W� 2 Rm⇥q and b� 2 Rm are the parameters to learn.
The hyperparameters p and q determine the hidden layer size of RNN↵ and RNN�, respectively.
Note that for prediction at each timestamp, we generate a new set of attention vectors ↵ and �. For
simplicity of notation, we do not include the index for predicting at different time steps. In Step 2,
we can use Sparsemax [28] instead of Softmax for sparser attention weights.

As noted, RETAIN generates the attention vectors by running the RNNs backward in time; i.e., RNN↵

and RNN� both take the visit embeddings in a reverse order vi,vi�1, . . . ,v1. Running the RNN
in reversed time order also offers computational advantages since the reverse time order allows us
to generate e’s and �’s that dynamically change their values when making predictions at different
time steps i = 1, 2, . . . , T . This ensures that the attention vectors are modified at each time step,
increasing the computational stability of the attention generation process.1

Using the generated attentions, we obtain the context vector ci for a patient up to the i-th visit as
follows,

ci =

iX

j=1

↵j�j � vj , (Step 4)

where � denotes element-wise multiplication. We use the context vector ci 2 Rm to predict the true
label yi 2 {0, 1}s as follows,

byi = Softmax(Wci + b), (Step 5)
where W 2 Rs⇥m and b 2 Rs are parameters to learn. We use the cross-entropy to calculate the
classification loss as follows,
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where we sum the cross entropy errors from all dimensions of byi. In case of real-valued output
yi 2 Rs, we can change the cross-entropy in Eq. (1) to, for example, mean squared error.

Overall, our attention mechanism can be viewed as the inverted architecture of the standard attention
mechanism for NLP [2] where the words are encoded by RNN and the attention weights are generated
by MLP. In contrast, our method uses MLP to embed the visit information to preserve interpretability
and uses RNN to generate two sets of attention weights, recovering the sequential information as
well as mimicking the behavior of physicians. Note that we did not use the timestamp of each visit
in our formulation. Using timestamps, however, provides a small improvement in the prediction
performance. We propose a method to use timestamps in Appendix A.

1For example, feeding visit embeddings in the original order to RNN↵ and RNN� will generate the same e1

and �1 for every time step i = 1, 2, . . . , T . Moreover, in many cases, a patient’s recent visit records deserve
more attention than the old records. Then we need to have ej+1 > ej which makes the process computationally
unstable for long sequences.

4

		,# 	,) 		,*

		&# 		&) 		&*

		"# ") 		"*

		$# 		$) 		$*

		+# 	+) 		+*

		'# 		') 		'*

Σ
	.* 	/* 5

⨀ ⨀ ⨀

1

23

4

011& 0112

Time

Figure 2: Unfolded view of RETAIN’s architecture: Given input sequence x1, . . . ,xi, we predict the
label yi. Step 1: Embedding, Step 2: generating ↵ values using RNN↵, Step 3: generating � values
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where gi 2 Rp is the hidden layer of RNN↵ at time step i, hi 2 Rq the hidden layer of RNN�

at time step i and w↵ 2 Rp, b↵ 2 R,W� 2 Rm⇥q and b� 2 Rm are the parameters to learn.
The hyperparameters p and q determine the hidden layer size of RNN↵ and RNN�, respectively.
Note that for prediction at each timestamp, we generate a new set of attention vectors ↵ and �. For
simplicity of notation, we do not include the index for predicting at different time steps. In Step 2,
we can use Sparsemax [28] instead of Softmax for sparser attention weights.

As noted, RETAIN generates the attention vectors by running the RNNs backward in time; i.e., RNN↵

and RNN� both take the visit embeddings in a reverse order vi,vi�1, . . . ,v1. Running the RNN
in reversed time order also offers computational advantages since the reverse time order allows us
to generate e’s and �’s that dynamically change their values when making predictions at different
time steps i = 1, 2, . . . , T . This ensures that the attention vectors are modified at each time step,
increasing the computational stability of the attention generation process.1

Using the generated attentions, we obtain the context vector ci for a patient up to the i-th visit as
follows,
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yi 2 Rs, we can change the cross-entropy in Eq. (1) to, for example, mean squared error.

Overall, our attention mechanism can be viewed as the inverted architecture of the standard attention
mechanism for NLP [2] where the words are encoded by RNN and the attention weights are generated
by MLP. In contrast, our method uses MLP to embed the visit information to preserve interpretability
and uses RNN to generate two sets of attention weights, recovering the sequential information as
well as mimicking the behavior of physicians. Note that we did not use the timestamp of each visit
in our formulation. Using timestamps, however, provides a small improvement in the prediction
performance. We propose a method to use timestamps in Appendix A.
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where gi 2 Rp is the hidden layer of RNN↵ at time step i, hi 2 Rq the hidden layer of RNN�

at time step i and w↵ 2 Rp, b↵ 2 R,W� 2 Rm⇥q and b� 2 Rm are the parameters to learn.
The hyperparameters p and q determine the hidden layer size of RNN↵ and RNN�, respectively.
Note that for prediction at each timestamp, we generate a new set of attention vectors ↵ and �. For
simplicity of notation, we do not include the index for predicting at different time steps. In Step 2,
we can use Sparsemax [28] instead of Softmax for sparser attention weights.

As noted, RETAIN generates the attention vectors by running the RNNs backward in time; i.e., RNN↵

and RNN� both take the visit embeddings in a reverse order vi,vi�1, . . . ,v1. Running the RNN
in reversed time order also offers computational advantages since the reverse time order allows us
to generate e’s and �’s that dynamically change their values when making predictions at different
time steps i = 1, 2, . . . , T . This ensures that the attention vectors are modified at each time step,
increasing the computational stability of the attention generation process.1

Using the generated attentions, we obtain the context vector ci for a patient up to the i-th visit as
follows,

ci =

iX

j=1

↵j�j � vj , (Step 4)

where � denotes element-wise multiplication. We use the context vector ci 2 Rm to predict the true
label yi 2 {0, 1}s as follows,

byi = Softmax(Wci + b), (Step 5)
where W 2 Rs⇥m and b 2 Rs are parameters to learn. We use the cross-entropy to calculate the
classification loss as follows,
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where we sum the cross entropy errors from all dimensions of byi. In case of real-valued output
yi 2 Rs, we can change the cross-entropy in Eq. (1) to, for example, mean squared error.

Overall, our attention mechanism can be viewed as the inverted architecture of the standard attention
mechanism for NLP [2] where the words are encoded by RNN and the attention weights are generated
by MLP. In contrast, our method uses MLP to embed the visit information to preserve interpretability
and uses RNN to generate two sets of attention weights, recovering the sequential information as
well as mimicking the behavior of physicians. Note that we did not use the timestamp of each visit
in our formulation. Using timestamps, however, provides a small improvement in the prediction
performance. We propose a method to use timestamps in Appendix A.

1For example, feeding visit embeddings in the original order to RNN↵ and RNN� will generate the same e1

and �1 for every time step i = 1, 2, . . . , T . Moreover, in many cases, a patient’s recent visit records deserve
more attention than the old records. Then we need to have ej+1 > ej which makes the process computationally
unstable for long sequences.

4

Liu & Sun ICML2017 - Deep Health August 5, 2017 90 / 124



Lecture 2: Challenges and Solutions of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge

GRAM	provide	accurate	prediction
GRAM shows better predictive performance under data 

constraints

0.7

0.75

0.8

0.85

0.9

0% 20% 40% 60% 80% 100%

Percentage of the training data used

A
U

C

HF	prediction	using	varying	sizes	of	training	data
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge

GRAM	learns	representations	well	
aligned	with	knowledge	ontology

Under review as a conference paper at ICLR 2017
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(a) Scatterplot of the final representations gi’s of GRAM+

(b) Scatterplot of the trained embedding matrix
Wemb of RNN+

(c) Scatterplot of the disease representations
trained by GloVe

Figure 3: t-SNE scatterplots of medical concepts trained by GRAM+, RNN+ and GloVe

plots on the strongest results from RNN+ (Figure 3b), and GloVe (Figure 3c), the same embedding
technique in initializing the basic embeddings ei. Figures 3b and 3c confirm that interpretable
representations cannot simply be learned only by co-occurrence or supervised prediction without
medical knowledge. GRAM+ learns disease representations that are significantly more consistent with
the given knowledge DAG G. Therefore the neural network predictive model that accepts gi is using
accurate representations that lead to higher predictive performance. Additional scatterplots of other
models are provided in Appendix E for comparison. An interactive visualization tool can be accessed
at http://www.sunlab.org/research/gram-graph-based-attention-model/.

3.4 ANALYSIS OF THE ATTENTION BEHAVIOR

Next we show that GRAM’s attention can be interpreted to understand how it considers data avail-
ability and knowledge DAG’s structure when performing a prediction task. Using Eq. (1), we can
calculate the attention weights of individual disease. Figure 4 shows the attention behaviors of four
representative diseases when performing HF prediction on Sutter HF cohort.

Other pneumothorax (ICD9 512.89) in Figure 4a is rarely observed in the data and has only five
siblings. In this case, most information is derived from the highest ancestor. Temporomandibular
joint disorders & articular disc disorder (ICD9 524.63) in Figure 4b is rarely observed but has 139
siblings. In this case, its parent receives a stronger attention because it aggregates sufficient samples
from all of its children to learn a more accurate representation. Note that the disease itself also
receives a stronger attention to facilitate easier distinction from its large number of siblings.

Unspecified essential hypertension (ICD9 401.9) in Figure 4c is very frequently observed but has only
two siblings. In this case, GRAM assigns a very strong attention to the leaf, which is logical because the
more you observe a disease, the stronger your confidence becomes. Need for prophylactic vaccination
and inoculation against influenza (ICD9 V04.81) in Figure 4d is quite frequently observed and also

7

Scatterplot	of	GRAM	representations
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Infectious And Parasitic Diseases
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Diseases Of The Blood And Blood-Forming Organs
Mental Disorders
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GRAM	learns	representations	well	
aligned	with	knowledge	ontology

Under review as a conference paper at ICLR 2017
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Figure 3: t-SNE scatterplots of medical concepts trained by GRAM+, RNN+ and GloVe

plots on the strongest results from RNN+ (Figure 3b), and GloVe (Figure 3c), the same embedding
technique in initializing the basic embeddings ei. Figures 3b and 3c confirm that interpretable
representations cannot simply be learned only by co-occurrence or supervised prediction without
medical knowledge. GRAM+ learns disease representations that are significantly more consistent with
the given knowledge DAG G. Therefore the neural network predictive model that accepts gi is using
accurate representations that lead to higher predictive performance. Additional scatterplots of other
models are provided in Appendix E for comparison. An interactive visualization tool can be accessed
at http://www.sunlab.org/research/gram-graph-based-attention-model/.

3.4 ANALYSIS OF THE ATTENTION BEHAVIOR

Next we show that GRAM’s attention can be interpreted to understand how it considers data avail-
ability and knowledge DAG’s structure when performing a prediction task. Using Eq. (1), we can
calculate the attention weights of individual disease. Figure 4 shows the attention behaviors of four
representative diseases when performing HF prediction on Sutter HF cohort.

Other pneumothorax (ICD9 512.89) in Figure 4a is rarely observed in the data and has only five
siblings. In this case, most information is derived from the highest ancestor. Temporomandibular
joint disorders & articular disc disorder (ICD9 524.63) in Figure 4b is rarely observed but has 139
siblings. In this case, its parent receives a stronger attention because it aggregates sufficient samples
from all of its children to learn a more accurate representation. Note that the disease itself also
receives a stronger attention to facilitate easier distinction from its large number of siblings.

Unspecified essential hypertension (ICD9 401.9) in Figure 4c is very frequently observed but has only
two siblings. In this case, GRAM assigns a very strong attention to the leaf, which is logical because the
more you observe a disease, the stronger your confidence becomes. Need for prophylactic vaccination
and inoculation against influenza (ICD9 V04.81) in Figure 4d is quite frequently observed and also
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge

GRAM:	Graph-based	Attention	Model	for	
Healthcare	Representation	Learning	

• Robust representation against data insufficiency

• Interpretable: Well aligned with medical knowledge

Medical 
ontology 

Electronic 
health 
recordsGRAM
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning

Outline

1 Lecture 1: Data Sources and Health Care Problems

2 Lecture 2: Challenges and Solutions of DL for Health Care
Deep Dive of Health Care Data
Challenge 1 - Big Small Data
Challenge 2 - Missing Data
Challenge 3 - Incorporation of Domain Knowledge
Challenge 4 - Interpretable Machine Learning

3 Future Directions
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning

Deep Learning as Blackbox
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning

Importance of Explainable Artificial Intelligence - I
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning

Importance of Explainable Artificial Intelligence - I
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning

Importance of Explainable Artificial Intelligence - II

How can I trust any machine learning algorithm? [Ribeiro et al, 2016]

Liu & Sun ICML2017 - Deep Health August 5, 2017 100 / 124



Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning

Interpretable Model is Necessary

Interpretable predictive models are shown to result in faster adoptability of
machine learning models.

Simple and commonly use models

Easy to interpret, mediocre
performance

Deep learning solutions

Superior performance, hard to
explain

Can we learn interpretable models with robust prediction performance?
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning

Ongoing Work on Explainable Machine Learning Models

Direct Interpretation

[Garson, 1991]: estimating feature importance directly from network
weight connections

[Hechtlinger, 2016]: computing output gradients with respect to input
features

[Itti et al., 1998; Mnih et al., 2014; Xu et al., 2015]: attention models

Indirect Interpretation

[Provost et al., 1997]: sensitivity analysis of feature contributions to a
neural network’s output

[Ribeiro et al., 2016]: local interpretability for black-box models

[Che et al., 2016b]: mimicking the blackbox through the prediction
scores

[Maaten and Hinton, 2008; Simonyan et al., 2013; Yosinski et al.,
2014; LeCun et al., 2015; Mnih et al., 2015; Mahendran and Vedaldi,
2015]: visualizing the hidden units
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning

INTERPRETABLE	DEEP	MODELS	FOR	ICU	
OUTCOME	PREDICTION

Robinder KhemaniZhengping Che Sanjay	Purushotham

91
Che et	al,	Interpretable	Deep	Models	for	ICU	Outcome	Prediction.	of	the	American	
Medical	Informatics	Association	Annual	Symposium	(AMIA),	2016.
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning

Interpretable Mimic Learning Framework [Che et al.,
2016b]

Main ideas:
Borrow the ideas from knowledge distillation [Hinton, et al., 2015]

and mimic learning [Ba, Caruana, 2014].
Use Gradient Boosting Trees (GBTs) to mimic deep learning
models.

Training Pipeline:

Benefits: Good performance, less overfitting, interpretations.
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning

Quantitative Evaluation

AUROC score of prediction on patients with acute hypoxemic respiratory failure.

AUROC score of 20 ICD-9 diagnosis category prediction tasks on MIMIC-III dataset.
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Model/Feature Interpretation

Partial dependency plot for mortality prediction on patients with acute
hypoxemic respiratory failure.
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Our model predicts a higher mortality change
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Most Useful Decision Trees for ventilator free days prediction.
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Useful features:

Lung injury score

Oxygenation index

PF ratio change
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RETAIN: INTERPRETABLE DEEP 

LEARNING MODEL

Buzz	StewartAndy	SchuetzEdward	Choi Taha Bahadori

47
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Regular	Machine	Translation Neural Attention Mechanism

49

It	is	amazing	what	you	can	accomplish	
if	you	do	not	care	who	gets	the	credit

如果你不在乎谁获得了荣誉，
你所能完成的事情是惊人的。
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It	is	amazing what	you	can	accomplish	
if	you	do	not	care	who	gets	the	credit

如果你不在乎谁获得了荣誉，
你所能完成的事情是惊人的。

Bahdanau,	Dzmitry,	Kyunghyun Cho,	and	Yoshua Bengio.	2014.
“Neural	Machine	Translation	by	Jointly	Learning	to	Align	and	Translate.”
arXiv [cs.CL].	arXiv.	http://arxiv.org/abs/1409.0473.
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Details	of	RETAIN
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Figure 2: Unfolded view of RETAIN’s architecture: Given input sequence x1, . . . ,xi, we predict the
label yi. Step 1: Embedding, Step 2: generating ↵ values using RNN↵, Step 3: generating � values
using RNN�, Step 4: Generating the context vector using attention and representation vectors, and
Step 5: Making prediction. Note that in Steps 2 and 3 we use RNN in the reversed time.

Note that for prediction at each timestamp, we generate a new set of attention vectors ↵ and �. For
simplicity of notation, we do not include the index for predicting at different time steps.

Another key idea in RETAIN is to generate the attention vectors by running the RNNs backward in
time; i.e., RNN↵ and RNN� both take the visit embeddings in a reverse order vi,vi�1, . . . ,v1. This
idea is inspired by the common behavior of physicians: When physicians try to diagnose based on
the past records, they typically study the patient’s most recent records first, and go back in time.
Computationally, running the RNN in reversed time order has several advantages as well: The reverse
time order allows us to generate e’s and �’s that dynamically change their values when making
predictions at different time steps i = 1, 2, . . . , T . It ensures that the attention vectors will be different
at each timestamp and makes the attention generation process computationally more stable.1

We generate the context vector ci for a patient up to the i-th visit as follows,

ci =

iX

j=1

↵j�j � vj , (Step 4)

where � denotes element-wise multiplication. We use the context vector ci 2 Rm to predict the true
label yi 2 {0, 1}s as follows,

byi = Softmax(Wci + b), (Step 5)

where W 2 Rs⇥m and b 2 Rs are parameters to learn. We use the cross-entropy to calculate the
classification loss as follows,

L(x1, . . . ,xT ) = � 1

N

NX

n=1

1

T (n)

T (n)X

i=1

⇣
y>

i log(byi) + (1� yi)
> log(1� byi)

⌘
(1)

where we sum the cross entropy errors from all dimensions of byi. In case of real-valued output
yi 2 Rs, we can change the cross-entropy in Eq. (1) to for example mean squared error.

Overall, our attention mechanism can be viewed as the inverted architecture of the standard attention
mechanism for NLP [2] where the words are encoded using RNN and generate the attention weights
using MLP. Our method, on the other hand, uses MLP to embed the visit information to preserve
interpretation and uses RNN to generate two sets of attention weights, recovering the sequential
information as well as mimicking the behavior of physicians.

1For example, feeding visit embeddings in the original order to RNN↵ and RNN� will generate the same e1

and �1 for every time step i = 1, 2, . . . , T . Moreover, in many cases, a patient’s recent visit records deserve
more attention than the old records. Then we need to have ej+1 > ej which makes the process computationally
unstable for long sequences.

4
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Figure 2: Unfolded view of RETAIN’s architecture: Given input sequence x1, . . . ,xi, we predict the
label yi. Step 1: Embedding, Step 2: generating ↵ values using RNN↵, Step 3: generating � values
using RNN�, Step 4: Generating the context vector using attention and representation vectors, and
Step 5: Making prediction. Note that in Steps 2 and 3 we use RNN in the reversed time.

Note that for prediction at each timestamp, we generate a new set of attention vectors ↵ and �. For
simplicity of notation, we do not include the index for predicting at different time steps.

Another key idea in RETAIN is to generate the attention vectors by running the RNNs backward in
time; i.e., RNN↵ and RNN� both take the visit embeddings in a reverse order vi,vi�1, . . . ,v1. This
idea is inspired by the common behavior of physicians: When physicians try to diagnose based on
the past records, they typically study the patient’s most recent records first, and go back in time.
Computationally, running the RNN in reversed time order has several advantages as well: The reverse
time order allows us to generate e’s and �’s that dynamically change their values when making
predictions at different time steps i = 1, 2, . . . , T . It ensures that the attention vectors will be different
at each timestamp and makes the attention generation process computationally more stable.1

We generate the context vector ci for a patient up to the i-th visit as follows,

ci =

iX

j=1

↵j�j � vj , (Step 4)

where � denotes element-wise multiplication. We use the context vector ci 2 Rm to predict the true
label yi 2 {0, 1}s as follows,

byi = Softmax(Wci + b), (Step 5)

where W 2 Rs⇥m and b 2 Rs are parameters to learn. We use the cross-entropy to calculate the
classification loss as follows,

L(x1, . . . ,xT ) = � 1

N

NX

n=1

1

T (n)

T (n)X

i=1

⇣
y>

i log(byi) + (1� yi)
> log(1� byi)

⌘
(1)

where we sum the cross entropy errors from all dimensions of byi. In case of real-valued output
yi 2 Rs, we can change the cross-entropy in Eq. (1) to for example mean squared error.

Overall, our attention mechanism can be viewed as the inverted architecture of the standard attention
mechanism for NLP [2] where the words are encoded using RNN and generate the attention weights
using MLP. Our method, on the other hand, uses MLP to embed the visit information to preserve
interpretation and uses RNN to generate two sets of attention weights, recovering the sequential
information as well as mimicking the behavior of physicians.

1For example, feeding visit embeddings in the original order to RNN↵ and RNN� will generate the same e1

and �1 for every time step i = 1, 2, . . . , T . Moreover, in many cases, a patient’s recent visit records deserve
more attention than the old records. Then we need to have ej+1 > ej which makes the process computationally
unstable for long sequences.

4

RETAIN	Algorithm
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Interpretation	of	RETAIN	model
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Heart	Failure	Results
Negative Log Likelihood on Test Set Classification AUC
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Retain: Interpretable Deep learning model

• Challenge: Deep learning models are often 

difficult to interpret

• RETAIN is a temporal attention model 

on electronic health records

– Great predictive power

– Good interpretation

55
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Future Directions

What’s	next?

86

Model interpretation More complex output

Clinical 

question & answer 

Modeling heterogeneous data sources

Clinical notes -Omic data sensor Medical imaging
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Contacts and Additional Information
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