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Tutorial Slides and Supplementary Materials

https://tinyurl.com/y7wuk9xt
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-
Why healthcare?

* Healthcare is big

¢ Healthcare is bad

* Healthcare is challenging
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<@, US healthcare: The COST problem

Overall spending: 3.8 trillion dollars (2014)
>

Top 10 most valuable companies combined
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Healthcare Waste Breakdown
(in billions)

US Healthcare Waste per year

$210

$55
Over-testing
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Opportunities
$75
Fraud
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Over-priced

Medical Tests and
Procedures

$190
Administrative $130
Costs.
Graph by MMS Analytics, Inc.
Data courtesy of the Institue of Medicine

$765 billions
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(@’ US Healthcare Quality Issue

e 200K to 400K preventable death per year
—Over 1000 per day

=
J
—t A
| : ‘ '
| l
https://wy /document 1ts/781687-john-j id based-estimate-of. p1/a117333
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Healthcare data is everywhere

- i

16,000 4 9million x18%

hospitals worldwide patients worldwide will annual compound
collect data on patients use remote monitoring growth rate is anticipated
devices by 2016 between 2010 and 2016
Y 2 for patients that will use
< remote monitoring

devices

0/ K

80 Q = 3 : ; Patient monitoring
of health data is a equipment pumps
unstructured and . : s out an average of

stored in hundreds of .'.. : :-' 1 OOO
forms such as labs A H n ’

readings per second or
86,400 readings in a day

results, images, and
medical transcripts

Source from http://www.okilab.es/how-big-data-is-changing-healthcare/
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.
Healthcare data sources

STRUCTURED DATA UNSTRUCTURED DATA
TYPES OF DATA T "
JElectinnic Medication 2 Medication icati
pill ispensers ’_l prescribed instructions Medcation e
7Y p—— Diaries
Medication medieation | Medication filled | Dose Route Allergies Herbal remedies
1 H It
Alternative
2] NDC  RiNorm QuL.opocie therapies
HL7 3
z g
Encounters Employee sick days Visit type and time Chief complaint g
Diagnoses Death records SNOMED  1CD-9 Dl;geg’r"!"‘.ial z
Procedures cpT 109 - g‘_
H HOME F
A PERSONAL TREATMENTS, SISO to0gY, S
Diagnostics (ordered) HEALTH oIk histology P 2
. i RECORDS : % = ygsts ¢ ||ECG  Radiology || | | | T s
Diagnostics (results) ’ o e TGS, g
Genetics PATIENTS : 23andMe.com SNPs, arrays 3 H
P LIKEME.COM F R =
Social history Police records Tobacco/alcohol use DIGITAL BLOGS 2
P CLINICAL ¢ 3
y history 2 . NOTES. ... | S
Symptoms Indirect from OTC purchases i PHYSICAL ™, | ¢ TWEETS g
et T | Gm e :
", PURCHASES .

. ; - TUPAPER /| FACEBOOK
Socioeconomic Census records, Zillow, Linkedin CUNICAL | 'posTinGs &
Social network Facebook friends, Twitter hashtags / NOTES;

] Climate, weather, public health databases, -
Environment HealthMap.org, GIS maps, EPA, phone GPS News feeds
istic linkage to validat or fill in missing data
Examples of biomedical data Ability to link data to an individual ~ Data quantity

Health care center (electronic
health record) data

[ caims data Registry or clnical trial data

7 | Pharmacy data = Easier to link to individuals i ’
= Harder to link to individuals

=Only aggregate data exists ]
Data outside of health care system More

Less

Weber, Griffin M., Kenneth D. Mandl, and Isaac S. Kohane. 2014. “Finding the Missing Link for Big Biomedical Data.”
JAMA: The Journal of the American Medical Association 311 (24): 2479-80.
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o Speech recognition

o Computer vision

— Image Classification

— Video analysis

e Natural language processing

— Machine translation
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Recipes for deep learning success

/ Big Data

Efficient \ /

"ﬂnrithms \ A
/ Parallel

computing)

-

Successful deep learning
models
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|
Early Work on Deep Learning in Health Applications

Stacked Auto-encoder (SDA)

Computational phenotyping [Lasko et al., P
2013; Kale et al., 2014; Che et al., 2015; = v
Kale et al., 2015; Miotto et al., 2016] N -

Deep neural networks (DNNs)
Restricted Boltzmann machine (RBM)
Multi-layer perceptron (MLP)

Condition prediction [Dabek and Caban,
2015; Hammerla et al., 2015]

Recurrent neural networks (RNNs)
Long short-term memory (LSTM) Gated

recurrent unit (GRU) s s s s s i i
Diagnosis/event prediction Lipton et al. B O e St n[‘ﬂ{
[2015]; Choi et al. [2016] dodsdadadsds . . . s

ICML2017 - Deep Health August 5, 2017 15 / 124



Lecture 1: Data Sources and Health Care Problems EHR and Claims Data
Outline

@ Lecture 1: Data Sources and Health Care Problems
@ EHR and Claims Data
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

* Doctor Al: Predicting Clinical Events
@&  via Recurrent Neural Networks

N : ~ -
Edward Choi Taha Bahadori ~ Andy Schuetz Buzz Stewart

Gegqrala &l g “%\1 Sutter Health

putational Science a

Choi, Edward, et al. 2016. “Doctor Al: Predicting Clinical Events via Recurrent Neural Networks.”
In Machine Learning for Healthcare Conference, 301-18.
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Do you want to be seen by a machine
or a human for medical care?
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Can machine perform similarly as
doctors in diagnosis?

1

©2012 CHRISTIANE BEAUREGARD

Millions patient encounters

Electronic health records Doctor Al
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Approach: Recurrent Neural Network
(RNN)

Patient X

EHR data '

ﬁ:\\‘ Sutter Health Xo X, Xp X3 X,
Event sequences

o

©

®
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Disease Progression Modeling

_________________________________________ |
Visit 3 ! !

Chest X-ray

# of true positives in the top k predictions

Accuracy: top-k recall =
y P # of true positives
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

RNN on predicting diagnoses in next visit

recall@30
ey [
logistic regression _
most freq |
last visit _

0 10 20 30 40 50 60 70 80
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Generalize RNN model from one
institution to another

065 Perform better when warm start
0.6 1 the existing model
© 0.55]
(52}
o 0.5
g ’ ]« Perform worse when cold-start
0.4 from random initialization
0.4
0.35
03 |-E-With0u| Pretraining -©-Pretrained on Sutter Dalase‘|
0 10 20
Number of Epochs
ICML2017 - Deep Health
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Summary: Doctor Al

Patient X

-

EHR data

&3y sutter Health

Xo X

Y-

X2

Event sequences

® ® ® ® [
- CA—TAT oo model
® ) ® @) - ®

o general & accurate model for many prediction tasks
e Can handle sequences of variable lengths

X3 X4

Choi, Edward, et al. 2016. “Doctor Al: Predicting Clinical Events via Recurrent Neural Networks.”
In Machine Learning for Healthcare Conference, 301-18.

https://github.com/mp2893/doctorai
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

® ® ®

R

USING RECURRENT NEURAL NETWORK MODELS
FOR EARLY DETECTION OF HEART FAILURE ONSET

How to model temporal relations in the EHR data

Edward Choi Andy Schuetz Buzz Stewart

G College of
YR o &%\1 Sutter Health

Edward Choi, Andy Schuetz, Walter Stewart, Jimeng Sun. Using Recursive Neural Network Models for Early Detection
of Heart Failure Onset, JAMIA 2016
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

MOTIVATIONS FOR EARLY DETECTION
OF HEART FAILURE

Heart failure is Reduces cost and

a complex hospitalization.
disease.

Improves Early intervention
existing clinical can slow down
quidelines of HF disease progression.
prevention.

=} = = =
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EHR and Claims Data
Temporal model: RNN

o x; one-hot coded Dx, Rx, Proc at time ¢

e h; hidden state at time ¢

e ¢ binary outcome of HF prediction y
o 7 total length of the medical codes
e Red box: a single unit of RNN Logistic Regression
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PREDICTION PERFORMANCE OF RNN

0.95
0.9
0.85
0.8
]
2 0.75
<
0.7
0.65
0.6
0.55
0.5
Logistic
Regression

B One-hot encoding

SVM MLP KNN

RNN

GRUw/o  GRUw/
duration duration

* RNN model achieves over 10% improvement on AUC
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PREDICTION PERFORMANCE OF RNN

B One-hot encoding Grouped code vectors
1
0.95
0.9
0.85
0.8
]
2 0.75
<
0.7
0.65
0.6
0.55
0.5
Logistic GRU w/o GRU w/
Regression duration duration

* RNN model achieves over 10% improvement on AUC
Representation matters
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PREDICTION PERFORMANCE OF RNN

B One-hot encoding Grouped code vectors ™ Medical concept vectors
1
0.95
0.9
0.85
0.8
1)
=0.75
=
0.7
0.65
0.6
0.55
0.5
Logistic SVM MLP N GRU w/o GRU w
Regression duration duration

* RNN model achieves over 10% improvement on AUC
* Data rep. (word2vec) > knowledge rep. (medical groupers)

ICML2017 - Deep Health August 5, 2017 30 / 124



Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Summary: Recurrent Neural Network (RNN) for
heart failure onset prediction

P et

Temporal information matters for

HF onset prediction Data driven representation matters

SR &, QW SutterHealth

Edward Choi, Andy Schuetz, Walter Stewart, Jimeng Sun. Using Recursive Neural Network Models for Early Detection
of Heart Failure Onset, JAMIA 2016
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

DEEP LEARNING SOLUTIONS FOR
CLASSIFYING PATIENTS ON OPIOID USE

Zhengping Che  Jennifer St. Sauver ~ Hongfang Liu
MAYO

% USC

Che et al, Deep Learning Solutions for Classifying Patients on Opioid UseZhengping
Che, Jennifer St. Sauver, Hongfang Liu, and Yan Liu. American Medical Informatics
Assocation Annual Symposium (AMIA), 2017
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IR
Deep Learning for Opioid Use Analysis

Opioid use study on datasets from the Rochester Epidemiology Project (REP)!
with more than 140k people

@ To extract and understand risk factors and
indicators for adverse opioid and opioid-related
events

@ To predict new opioid users and dependence
and recognize misuse on opioid analgesics

@ To provide health care providers with better
suggestions on pain medication prescriptions

S mwr oy
;i MiAYQ CLINIC
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Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Our Framework

@ Cohort selection and group identification

@ More than 110 millions of medical
records in 2013-2016 are used

o Patients are grouped into short-term, Feature Mapping
long-term, and opioid-dependent users

° Temporal feature processing features features features
. 1-0f-K Coding + 1-of-K Coding +
@ Records of diagnoses, procedures, and 122 0cE] Temporal

prescriptions are mapped into different
. . . Avector of length (D, + Dy + Dyy) Amatrix of size Tseg X (Dpx + Dps + Dpy)
coding systems via one-hot encoding [ : [ l
@ Sum-pooling and segmentation along
. . . . DNN RNN
the temporal dimension is applied to Prediction " Prcin %N%H%
build the input matrix for each patient 6009

@ Multilayer DNNs and LSTMs with RelLU
function are used for prediction.

Prediction Yorea € (0.1] Yorea €(0.1]

ICML2017 - Deep Health August 5, 2017 34 / 124



Lecture 1: Data Sources and Health Care Problems EHR and Claims Data

Empirical Evaluations

Deep learning models outperforms other baselines with similar model size

@ Classification comparisons on AUC score (auc) and kappa coefficient (k)
‘ Short-term / Long-term ‘

Long-term / Opioid-dependent
| LR SVM RF DNN RNN | LR SVM RF

auc ‘ 0.7323  0.7327  0.6936 0.7340 0.7536 ‘ 0.6512  0.6429  0.6999
K ‘().1090 0.0885 0.1289 0.0756 +0.004 0.2076 ‘ 0.1906  0.1821

DNN RNN

0.7279 0.7144
0.2342 0.3006 0.2542

Most important features are selected by DNN models

@ Feature importance Z are calculated from weights in all the layers in DNN
7=wHpBNH ( W BND (W[”BN“](l))) e R\¥P

@ Top related feature categories and their corresponding scores
Short-term / Long-term |

Long-term / Opioid-dependent

Table ‘ Code ‘ Feature Name ‘ ya ‘ Table ‘ Code ‘ Feature Name ‘ s

RX | C8834 | Opioid Analgesics | 02287 | RX | (8834 | Opioid Analgesics | 0.7784

RX | €8890 | Amphetamine-like Stimulants | —0.0843 | DX | CCS 661 | Substance-related Disorders | 0.6186

RX ‘ C8838 ‘ Non-opioid Analgesics ‘ 0.0802 ‘ PR ‘ CCS 182 ‘ Mammography ‘ —0.3481
ICML2017 - Desp Health
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Lecture 1: Data Sources and Health Care Problems Medical Imaging Data
Outline

@ Lecture 1: Data Sources and Health Care Problems

@ Medical Imaging Data
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Lecture 1: Data Sources and Health Care Problems Medical Imaging Data

Unstructured Imaging Data: Data

R h at Googl
Stanford | ENGINEERING © Rescarch at Google

Computer Science

Epidermal lesions Melanocytic lesions. Melanocytic lesions (dermoscopy) " Hemorrhages.

Identify diaba?c ratinopathy severifiy

A. HEALTHY B. DISEASED

Automated

Malignant

. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman
R, Nelson PC, Mega JL, Webster DR. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy
in Retinal Fundus Photographs. JAMA.2016;316(22):2402-2410

2. A.Esteva, B. Kuprel, RA. Novoa, J. Ko, S.M. Swetter, HM. Blau , S. Thrun. Dermatologist-level classification of skin cancer with deep

neural networks. Nature 542, 115-118 (2017)
3. Liu, Yun, Krishna Gadepalli, Mohammad Norouzi, George E. Dahl, Timo Kohlberger, Aleksey Boyko, Subhashini Venugopalan, et al.
2017. “Detecting Cancer Metastases on Gigapixel Pathology Images.” arXiv [cs.CV]. arXiv. http://arxiv.orglabs/1703.02442.

ICML2017 - Deep Health August 5, 2017 37 / 124
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Lecture 1: Data Sources and Health Care Problems Medical Imaging Data

Unstructured Imaging Data: Task

Data New Data

prs

- Prediction
results

r L
[ ~ g |
.i =) |Training| == [BYENE

1 1, NovEABER 190 ' oy Midden lover 1 hidden layer 2 i
fnput Leyer

Sriommems IS, o egns
wr 5% e e

Training

Comokaons Subsampies  Comcksons Subsanping . Fulcomnacion

Liu & Sun ICML2017 - Deep Health August 5, 2017
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Lecture 1: Data Sources and Health Care Problems Medical Imaging Data

DNN for detecting diabetic retinopathy

¢

Mild/Moderate Proliferative

Image based detection of diabetic retinopathy (JAMA 2016)

* Train deep neural networks to find diabetic retinopathy
severity from the intensities of the pixels in a fundus
image.

* Received testing AUC of 0.991 on EyePACS-1 data, and
testing AUC of 0.990 on Messidor-2 data.

1. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman
R, Nelson PC, Mega JL, Webster DR. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy
in Retinal Fundus Photographs. JAMA.2016;316(22):2402-2410
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Lecture 1: Data Sources and Health Care Problems Medical Imaging Data

Unstructured Imaging Data: skin lesion (Nature 2017)

Matgrart

* Deep convolutional neural networks to perform binary classification

for two use cases:
* keratinocyte carcinomas versus benign seborrheic keratosis; and

* malignant melanomas versus benign nevi.
* Achieved better-than-human expert accuracy (0.7210 vs. 0.6556)

1. A.Esteva, B. Kuprel, RA. Novoa, J. Ko, S.M. Swetter, HM. Blau , S. Thrun. Dermatologist-level classification of skin cancer with deep
neural networks. Nature 542, 115-118 (2017)
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Lecture 1: Data Sources and Health Care Problems Medical Imaging Data

Unstructured Imaging Data: skin lesion (Nature 2017)

Skin lesion image Deep convolutional neural network (Inception v3) Training classes (757) Inference classes (varies by task)
® Acral-lentiginous melanoma
® Amelanotic melanoma

® Lentigo melanoma

® -

{ L i ¥ b Jeiason) | | ||‘ )
1@ Blue nevus
® Halo nevus 4 © 8% benign melanocytic lesion

® Mongolian spot
® -

—4 @ 92% malignant melanocytic lesio

Convolution
AvgPool
MaxPool
Concat

= Dropout

= Fully connected

= Softmax

* Deep convolutional neural networks to perform binary classification

for two use cases:
* keratinocyte carcinomas versus benign seborrheic keratosis; and

* malignant melanomas versus benign nevi.
* Achieved better-than-human expert accuracy (0.7210 vs. 0.6556)

1. A.Esteva, B. Kuprel, R.A. Novoa, J. Ko, S.M. Swetter, HM. Blau , S. Thrun. Dermatologist-level classification of skin cancer with deep
neural networks. Nature 542, 115-118 (2017)
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Lecture 1: Data Sources and Health Care Problems Medical Imaging Data

Unstructured Imaging Data: skin lesion (Nature 2017)

Basal il carcinomas. « Epidermal berign
- - Epidermal malignant
Melanacytic berign

« Melanocytic malignant

Squamous cell carcinomas

“:w‘..
T LLL
L L B

Seborthosic keratoses

(932 images). Coloured point clouds represent the different disease
categories, showing how the algorithm clusters the discases. Insets show
representation of four important discase classes by applying t-SNE, images corresponding to various points. Images reprinted with permission
amethod for visualizing high-dimensional data, to the last hiddenlayer  from the Edinburgh Dermofit Library (https://licensing.eri.ed.ac.uk/i/
representation in the CNN of the biopsy-proven photographic test sels software/dermofi-image-library himl).

Figure 4| t-SNE visualization of the last hidden lay
in the CNN for four discase classes. Here we show the CNN's internal

* Deep convolutional neural networks to perform binary classification

for two use cases:
* keratinocyte carcinomas versus benign seborrheic keratosis; and

* malignant melanomas versus benign nevi.
* Achieved better-than-human expert accuracy (0.7210 vs. 0.6556)

1. A.Esteva, B. Kuprel, R.A. Novoa, J. Ko, S.M. Swetter, HM. Blau , S. Thrun. Dermatologist-level classification of skin cancer with deep
neural networks. Nature 542, 115-118 (2017)
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[T B DEVERSINTIOEN T N FET NEETCR LI EI  Continuous Time Series (EEG, ECG, ICU monitoring)
Outline

@ Lecture 1: Data Sources and Health Care Problems

e Continuous Time Series (EEG, ECG, ICU monitoring)
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Lecture 1: Data Sources and Health Care Problems Continuous Time Series (EEG, ECG, ICU monitoring)

SLEEPNET: Automated Sleep
Medicine via Deep Learning

, Haogi Sun, Bala ji
Gopara ju, M Brandon Westover, Matt T Bianchi,

H | MASSACHUSETTS
Ge-orreg‘;g @1 GENERAL HOSPITAL

=

https://arxiv.org/abs/1707.08262
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Continuous Time Series (EEG, ECG, ICU monitoring)
Motivation: Automated sleep

medirine

Polysomnogram record (over time)

Sensor at nose

L sosnon | 5
1o measure air flow

P T e Ry SR
level T
Decmasen
biood oxygen el =
Bratting Al anovn 7| o= "‘ gt
e : ldl |

Wies transmit
data to a compuer.
Atechnician in

Top eves = wokeREM sep
=T W11 N P
tage L L

Bottom levels = deep sieep

Elastic belt
sensors around
chest and bely
measure amount:
ofeffort 1 broath

Polysomnogram (PSG) recording

Sensor on finger
measures amout of
oxygen in blood

o ~50-70million people in US currently suffer sleep disorders
o Central diagnostic tool is the overnight sleep study, Polysomnogram (PSG)
o Labor intensive effort to annotating PSG

— Automation of these could alleviate these concerns
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Lecture 1: Data Sources and Health Care Problems Continuous Time Series (EEG, ECG, ICU monitoring)

Input Data

M, M

Wiy
AN A A

""w Fa™ s [ ‘vt\.,\ 0 b ety
R A e T R e

T T R e

T S

e Every 30 second of EEG were

Left
brain

Right
brain

(EEG)

Rapid Eye
Movement(REM)

Sleep Stages

Output
Non Rapid Eye
Movement(NREM) Wake
Non-REM Non-REM Non-REM
stage 3(N1) stage 2 (N2) | | stage3d (N3)

EEG data in PSG consists of data from ¢ different channels
annotated into one of 5 stages

— Sleep stages are important for many sleep quality metrics

ICML2017 - Deep Health

Annotation is nontrivial even for experienced technologists
— Inter rater agreement rate about 70%

August 5, 2017
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Lecture 1: Data Sources and Health Care Problems

Continuous Time Series (EEG, ECG, ICU monitoring)

Analytic pipeline of SLEEPNET

Feature o
; Classification
r- Extraction --3  r---—
- Logistic
11 [ regression
RawEEG || | =
i 0| Tree boosti
features i i .g ting
bl @ Muliayer
- perceptron
! |
Spectrogram | —»i
pfzcatt?es I 1 g Convolutional
- g neural network
i i g Recurrent
1 = | neural network
Expen | 1 Q
defned | | | | Recurent-
features | | | O | Convolutional
b neural network

r--- Deployment - oo

Refined
annotations

|

I 1

Evaluaion | |
v i ! Software !
! I 1| dependency i
| e 1
| [N | Docker |,| Applcation | !
! b container interface ||
I [ !
1 1
! Model store H—{ Best model o
| |
1

1

1

1

|

(d) Analytic pipeline of SLEEPNET. The blue color components correspond to model training module. The green
color components belongs to the model deployment module.

ICML2017 - Deep Health

39
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[ I B DEVERSINITISCOE N M o PRV NGET R SIC VI Il Continuous Time Series (EEG, ECG, ICU monitoring)

Dataset Description

Dataset Property Number
Number of Patients | 10,000
Hours of EEG data | 80,000
Raw data storage 3.2 TB
Number of labeled samples  >9 million

ICML2017 - Deep Health
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[ I B DEVERSINITISCOE N M o PRV NGET R SIC VI Il Continuous Time Series (EEG, ECG, ICU monitoring)

Results

Expert Defined Features | Spectrogram Features | Waveform Features

Model | Accuracy Kappa Accuracy | Kappa | Accuracy | Kappa
LR 68.54 63.88 66.54 66.61 67.43 62.71
B 75.67 69.47 7161 65.37 72.36 66.37
MLP 72.23 68.41 70.23 66.71 69.56 64.21
CNN 79.45 72.63 77.83 71.45 7131 7147
I RNN 85.76 79.46 79.21 73.83 79.46 72.46
RCNN 81.67 76.38 8147 7437 79.81 73.52

Table 4: Performance of different feature representations with model combinations

RNN + expert defined features perform the best

ICML2017 - Deep Health

August 5, 2017 49 /124



Lecture 1: Data Sources and Health Care Problems Continuous Time Series (EEG, ECG, ICU monitoring)

Alsorithm achieves expert-level
performance (av§. accuracy > 85%)

Normalized confusion matrix

N1 0.186 0.006 0.039 0.208
N2} 0.032 0.019 0.013
o
s 0.001
o N3p
2
=
Rl 0.001
w| 0.004 0.013 JEIY]

S ¢ @ N
Predicted label

Confusion matrix for the best performing model (RNN+expert)
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Lecture 1: Data Sources and Health Care Problems Continuous Time Series (EEG, ECG, ICU monitoring)

Summary: SLEEPNET

Automated Sleep staging  Large dataset of 10,000 Deployed for
based on deep learning polysomnogram studies research
https://arxiv.org/abs/1707.08262 43
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Lecture 1: Data Sources and Health Care Problems Continuous Time Series (EEG, ECG, ICU monitoring)

INTERPRETABLE DEEP MODELS FOR ICU
OUTCOME PREDICTION

Zhengping Che Sanjay Purushotham  Robinder Khemani
Chvldrens
l |S‘ Hospital »
LOS ANGE[ES

Che et al, Interpretable Deep Models for ICU Outcome Prediction. of the American
Medical Informatics Association Annual Symposium (AMIA), 2016.
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Continuous Time Series (EEG, ECG, ICU monitoring)
Time Series in Critical Care Unit (ICU)

Critical care is among the most important areas of medicine.
e >5 million patients admitted to US ICUs annually.?
Cost: $81.7 billion in US in 2005: 13.4% hospital costs, ~1% GDP.!

°
e Mortality rates up to 30%, depending on condition, care, age.'
°

Long-term impact: physical impairment, pain, depression.

Society of Critical Care Medicine website, Statistics page.
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http://www.sccm.org/Communications/Pages/CriticalCareStats.aspx

[T B DEVERSINTIOEN T N FET NEETCR LI EI  Continuous Time Series (EEG, ECG, ICU monitoring)
Datasets and Tasks

Children’s Hospital Los Angeles (CHLA)

398 patients stay > 3 days

Static features (age, weight, etc.): 27 variables

Temporal features (Blood gas, ventilator signals,injury markers, etc.): 21
variables

MIMIC 11l Dataset

19714 patients stay for 2 days

All temporal features (input fluids, output fluids, lab tests, prescription):
99 variables

PhysioNet Challenge Part of MIMIC Il dataset

Task Prediction task (mortality, ventilator free days, and disease code),
computational phenotyping, anomaly detection, disease subtyping
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Continuous Time Series (EEG, ECG, ICU monitoring)
Deep learning model: DNN + GRU

* Static + (flattened) temporal features » Temporal features only
« DNN > + GRU

Output @

* Static + temporal features | Prediction Layer
* DNN + GRU (combination)

DNN

Feature @ @ Feature
Hidden
Layert) [ 6ru |- - = Gru |

Static Temporal

Input Input
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Lecture 1: Data Sources and Health Care Problems Continuous Time Series (EEG, ECG, ICU monitoring)

Experiment Results

Mortality Ventilator Free Days
mSVM mSVM
. ELR mLR
Baselines

uDT uDT
mGBT mGBT
= DNN = DNN

Deep
®GRU EGRU

Models
HDNN + GRU 0.7813 ®DNN + GRU
0.55 0.65 0.75 0.55 0.65 0.75
SVM: support vector machine; LR: logistic regression;
DT: decision tree; GBT: gradient boosting tree.

Results are based on 5-fold cross-validation.
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Lecture 1: Data Sources and Health Care Problems Clinical Notes
Outline

@ Lecture 1: Data Sources and Health Care Problems

@ Clinical Notes
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Clinical Notes
Deep Neural Networks for Analyzing Clinical Notes

Examples of some recent development:
@ LSTM for i2b2/VA relation classification challenge [Luo, 2017]

e Convolutional neural networks for medical text classification [Hughes
et al., 2017]

o Bidirectional RNN for medical event detection [Jagannatha and Yu,
2016]

e RNN with attention for adverse drug reaction [Pandey et al., 2017]

@ Condensed memory networks for clinical diagnostic Inferencing
[Prakash et al., 2016]

o Neural attention models for classification of radiology reports [Shin
et al., 2017]
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Lecture 2: Challenges and Solutions of DL for Health Care Deep Dive of Health Care Data
Outline

© Lecture 2: Challenges and Solutions of DL for Health Care
@ Deep Dive of Health Care Data

ICML2017 - Deep Health August 5, 2017 59 / 124



Lecture 2: Challenges and Solutions of DL for Health Care Deep Dive of Health Care Data

Example of Health Care Data

[ ] mcromoucavEvENTS

3(Juson u ADMIT DT - "XI50-30-08"
. SEX T 5 a () cusmar
o e o T Genc-.tral desu‘:nptorS 5 {)oe I
& DOB : "3330-07.08° and time series, etc. i [ ] PROCED SEvENTS

& SUBJECT 10100 o { ) COMORSIDITY_SCORES

" DOO: = - !
() Aowissions Data from multiple #[Jrcoe
a()use sources o JoeuoomvecevENTS

N N

l Missing data ‘ | Moisy data ‘ Irregularity

Liu & Sun ICML2017 - Deep Health August 5, 2017 60 / 124




Lecture 2: Challenges and Solutions of DL for Health Care Deep Dive of Health Care Data

Machine learning challenges
for health applications

Small sample size

Wy (( \;
NN TR

* Rare diseases
¢ Small clinics

Medical ontology

/
vl

Missing value

iagnosis

o
Observation |\ Prediction Sate
Window S\ Window

Longitudinal
Patient Data

* Explain the prediction
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data
Outline

© Lecture 2: Challenges and Solutions of DL for Health Care

@ Challenge 1 - Big Small Data
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data

VARIATIONAL RECURRENT ADVERSARIAL
DEEP DOMAIN ADAPTATION

Purushotham et al, Variational Recurrent Adversarial Deep Domain Adaptation.
International Conference on Learning Representations (ICLR 2017)

88
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Slale il Dol Loz
Motivation - Big Small Data

Limited amount of data available to train age-specific or
disease-specific models

@ A toy example: predicting mortality across adults and children in ICU

Target

Model Trained on Adults

Model trained on Children

Children

0.56

0.70

@ Training models for each age group independently is not ideal due to
limited amount of data

Children (target domain)?

Question: How do we adapt models from Adults (source domain) to J

ICML2017 - Deep Health
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data

Problem Formulation

Case study: mortality prediction for patients across different age groups

o Input: N multivariate time series example: z' = (z/)L"
e Source domain (e.g. adult): {a% y;}" ,, target domain (e.g., child):

{‘TJ ;y:n—i—l

e Output: mapping function f1%79¢ (2%) ~ y;

Problem definition: unsupervised domain adaptation for multivariate
time series
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data
Related Work

Domain adaption for non-time series data

Domain discrepancy reduction [Ben-David et al., 2007]
Instance re-weighting [Jiang and Zhai, 2007]

Subspace alignment [Fernando et al., 2013]

Deep learning approaches [Ganin and Lempitsky, 2014; Tzeng et al.,
2015], domain adversarial neural networks (DANN) [Ganin et al.,
2016]

Domain adaption for sequence or time series data
e Dynamic Bayes networks [Huang and Yates, 2009]
@ Recurrent neural networks [Socher et al., 2011]

Our solution:
Deep learning model with adversarial training and variational methods for
domain invariant representation while transferring temporal dependencies
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data

Variational Adversarial Deep Domain Adaptation
(VADDA) [ICLR 2017]

VRNN objective function [Chung et al, 2016]
.
Lafs0000) = By ot ey D (- Dlan. el 2o, ) Hog o (sl )

@ 6 )

Inference: z{~q(zt|xL,, zL,)
Generation: x{~p(x{|z,, xL,)
Recurrence: hy = RNN(x;, z¢, hy—1)

ICML2017 - Deep Health August 5, 2017 67 / 124



Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data

Variational Adversarial Deep Domain Adaptation
(VADDA) [ICLR 2017]

VRNN objective function [Chung et al, 2016]

Lr(a 0o, 0) = By 1 ot D (=Dlan, (2l 2 Ip(eflakr, 2Lo)Hog po, (a2 w%0))
- - t=1

Source classification loss with regularizer

Mg n o ZT’ (x5 6, 0,)+ chx Oy, 0)+AR(6,)

Inference: z{~q(zt|xL,, zL,)
Generation: x{~p(x{|z,, xL,)
Recurrence: hy = RNN(x;, z¢, hy—1)
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Sl = E Sl
Variational Adversarial Deep Domain Adaptation
(VADDA) [ICLR 2017]

VRNN objective function [Chung et al, 2016]

Lr(a 0o, 0) = By 1 ot D (=Dlan, (2l 2 Ip(eflakr, 2Lo)Hog po, (a2 w%0))
- - t=1

Source classification loss with regularizer

Mg n o ZT’ (x5 6, 0,)+ chx Oy, 0)+AR(6,)

&y Domain regularizer [Ganin et al, 2016]

Inference: z{~q(zf|xL,, zL,)
Generation: x{~p(x{|z,, xL,)

Recurrence: h, = RNN (x;, 2, hy_1) R(be) = HlaX {** ZLC’ (x';04,0.)—— Z La( X 104, 0c }
i=n+1
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Sl = E Sl
Variational Adversarial Deep Domain Adaptation
(VADDA) [ICLR 2017]

VRNN objective function [Chung et al, 2016]

Lr(a 0o, 0) = By 1 ot D (=Dlan, (2l 2 Ip(eflakr, 2Lo)Hog po, (a2 w%0))
- - t=1

Source classification loss with regularizer

Mg n o ZT’ (x5 6, 0,)+ chx Oy, 0)+AR(6,)

&y Domain regularizer [Ganin et al, 2016]

Inference: z{~q(zf|xL,, zL,)

Generation: x{~p(x{|z,, xL,)
Recurrence: h, = RNN (x,, z¢, hy—1) R(be) = nbax {**ZC,{ x';04,0.)—— E Lq(x4; 04,0, }
i=n+1
Overall Objective function
1 &1 . 1
E(ﬁe,ﬁg,ﬁyﬁd)*NZ?L.(X‘;QE,HQJ+E; (x4 0,)— Z[dx 04) +— z;lz:dx :604))
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data

Experiments

Case Study: Acute Hypoxemic Respiratory Failure
@ Datasets
e Pediatric ICU: Child-AHRF
@ 3098 patients at Children’s Hospital Los Angeles (CHLA) Group 1:
children (0-19 yrs)
o MIMIC-II : Adult-AHRF

@ 5527 patients Group 2: working-age adult (20 to 45 yrs); Group 3: old
working-age adult (46 to 65 yrs, Group 4: elderly (66 to 85 yrs); Group
5: old elderly (> 85 yrs)

@ Input features - 21 time series variables (e.g., blood gas, ventilator
signals, injury markers, etc.) for 4 days

@ Prediction tasks - Mortality label
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data

Classification Accuracy

Baselines:
@ Non-domain adaptation: Logistic regression, Adaboost, Deep Neural
Networks
@ Deep Domain adaptation: DANN, R-DANN, VFAE [Louizos et al,
2015])
Source-Target LR  Adaboost DNN DANN VFAE R-DANN VRDDA
32 0555 0562 0569 | 0572 0615 0603 0.654
42 0.624  0.645 0569 | 0589 0.635 0584  0.656
52 0527 0554  0.551 | 0.540 0588  0.611 0.616
23 0.627 00621 0550 | 0563 0585 0708 0.724
4-3 0.681 0.636 0.542 0.527 0.722 0.821 0.770
53 0.655 0706 0503 | 0.518 0.608 0769  0.782
2-4 0.585 0.591 0.530 0.560 0.582 0.716 0.777
3-4 0.652 0.629 0.531 0.527 0.697 0.769 0.764
5 4 0689 0699 0538 | 0532 0614 0728  0.738
25 0565 0543 0540 | 0526 05556  0.659  0.719
35 0576 0.587  0.510 | 0.526 0533 0630  0.721
45 0682 0587 0575 | 0548 0712 0747  0.775
51 0502 0573 005567 | 0563 0618 05063  0.639
41 0.565 0533 0572 | 0542 0.668 0577 0.636
31 0500 0500  0.542 | 0.535 0570  0.591 0.631
21 0.520 0534 | 0559 0578 0630  0.637

00
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data

Domain-invariant Representations

DNN R-DANN VADDA

t-SNE projections for the latent representations for domain adaptation from Adult-AHRF to
Child-AHRF

VADDA has better distribution mixing than DANN J
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 1 - Big Small Data

Temporal Dependencies across Domains

EE

®
R e 1 o152 a8 9 a5 4 45
Source Target
AHREF, 3-4

R-DANN

P

VADDA

Memory cell state neuron activations of the R-DANN and VADDA

R-DANN
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 2 - Missing Data
Outline

© Lecture 2: Challenges and Solutions of DL for Health Care

@ Challenge 2 - Missing Data
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 2 - Missing Data

RECURRENT NEURAL NETWORKS FOR
MULTIVARIATE TIME SERIES WITH
MISSING VALUES

[
Zhengping Che Sanjay Purushotham Kyunghyun Cho David Sontag
(/
USC NYU

Che et al, Recurrent Neural Networks for Multivariate Time Series with Missing
Values. arXiv:1606.01865
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Care Challenge 2 - Missing Data

Lec 2: Challenges and Solutions of DL for Hea

Missing Values are Useful

Missingness comes from various reasons.

Az BA B8 Bc B0 sE or sc Bn

Qmftateg Dl imde Sl il Zoom T8 CRS1-|CRS2(-| CRS3 - |FIO21 - | FIO22|- | FiG23 - [HCO31 - [HCO32 - [HEO33 - ||

23.9965: 23 4375 |24.1134]

HR 027645 0 23000. 0 200751 0 45295 0 45729 0 44991
G 2r7ast 113408 0 73171: 0 30047 0 35671 0 24090¢ 13.05608 19
L’k' h 0.60328: 0.29352¢ 0.29644: 0.35100¢ 0.37197¢ 0.40717: 192951 22 5520¢ 28
0723361 067750 0 Soaest 0 43995 0 24000 041706 - 201 20,0148\ 39 6755
L L Shaire: Erei 1osan 21 s5e3 22

458 38.5090; 384861 :
BP 0-358081 " i

pH ﬁ

3 I "’
Bkl ot f— @
Missingness provides rich information about patients health condition.

033650 0.20941: 0.28634( 0.40000( 0 40000( 0.40000( 29.1104:
26 1506 29 Seaa=T2
C g 25 0a25( 34 7575 |38 8510¢
23 23 - 21.7972. 24.9194: 23.3015(
0793951/ 0.89380' 0 59436 0 52895: 0 33697 0. 30000( 22 0472 30 1205( 20 1827 '

08
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 2 - Missing Data

Time-Series Inputs with Missing Values

Given time series data with missing values X, we have two representations
for missingness.

@ Masking M:

[ ] /.

Whether a variable is missing or not.
Time Step 3 4 5 6 7
@ Time Interval A: Value 49 [N/A N/A 47 50
. .. Masking 1 0 0o 1 1
How long a variable has been missing. EEHTES s 1 2 3

There exist three solutions with no modification on the predictive models.
@ Mean imputation of missing values (Mean)
@ Forward imputation of missing values (Forward)

@ Simple concatenation of indicators (Simple)
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 2 - Missing Data

Deep Learning Models for Time-Series with Missing Values

@ Mean: Replacing each missing observation by the mean of the variable
across the training examples [Shao et al., 2009].

:L'gl +— mf:cf + (1 — md)fd m 47 55 % 49 &

47 50

B

@ Forward: Assuming each missing value is the same as its last measurement
zp and using forward imputation [Unnebrink and Windeler, 2001].

xf(—mfxtd—i—(l—mf)x‘ti, B - 55 55 o 1w o so

@ Simple: Concatenating the measurement x, masking m, and/or time
interval 4.
o Similar ideas are used in RNN models: [Choi et al., 2015](x and time
t), Pham et al. [2016](x and ¢), and [Lipton et al., 2016](x and m).

(n) (n) (n) <(n) Input 47 55 55 49 49 49 47 50
$t" — [;Ct" ;mtn ;(5tn } P 1 1 0| 1 0 o0 1 1
Duration 1 1 1 2 1 2 3 1
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Challenge 2 - Mising Data
GRU-R [Che et al., 20164]

Decay Term ~: A flexible transformation on A jointly learned with deep
model.
v = exp{—ReLU(W,0; + b,)}
GRU-D model
@ Decay on the last observations:

x‘f — mfwf +(1- mf)’ymf:rf/ +(1- mf)(l - ’ymf)a?d

@ Decay on the hidden states:

hi—1 + Yr, O h¢_y

The update functions for GRU are:

zt =0 W,z + U,hi—1 + Vomy + b)ry = 0 (Weay + Uphye—1 + Vi + b,)
h: = tanh Wxi +U(ri ©hi—1) + Vmy +b)hy = (1 — 2¢) Ohy1 4+ 20 © h.
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 2 - Missing Data

Empirical Evaluation

Evaluations on synthetic dataset

with different missing rates
1 GRU-mean GRU-forward

GRU-simple W GRU-D
0.9

0.8
" I I
0.6
0.2 0.5 0.8

0

Evaluations for mortality early

prediction

0.87

—— .

0.81

0.75
GRU-simple  —GRU-D
0.69 O SVM-simple  a RF-simple

12 18 24 30 36 42 48

AUC score on mortality prediction

GRU-mean GRU-forward

Models MIMIC-III  PhysioNet
LR-forward 0.7589 0.7423
SVM-forward 0.7908 0.8131
Non- RF-forward 0.8293 0.8183
RNN LR-simple 0.7715 0.7625
SVM-simple 0.8146 0.8277
RF-simple 0.8294 0.8157
LSTM-mean 0.8142 0.8025
RNN GRU-mean 0.8192 0.8195
GRU-forward 0.8252 0.8162
GRU-simple 0.8380 0.8155
Ours  GRU-D 0.8527 0.8424
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 2 - Missing Data

Empirical Evaluation

Input decay plots of all 33 variables for mortality prediction on PhysioNet dataset

Cholesterdl $7: Troponin| 18:Tropommn| | 3: Albumin 0: ALP 1:ALT 5: Bilirubin [ [16: Lactate| | 247 530: 30: WBC
mr:0.9989| [mr:0.9984 [mr:0.9923( [mr:0.9915( |mr: 0.9888| |mr:0.9885| |mr:0.9885| [mr:0.9884| [mr:0.9709( [mr:0.9705( [mr: 0.9532
11: Glucose| 19: Na 18: Mg 12: HCO3 4: BUN Creatining  p2: Platelet: 15:K 13: HCT 21:Pa02 | [20: Paco2
mr:0.9528| [mr:0.9508( [mr:0.9507( [mr:0.9507( [mr:0.9496| [mr:0.9493| [mr:0.9489| [mr:0.9477| [mr:0.9338( [mr:0.9158( [mr: 0.9157

3Z A 9: Fi02 3:RespRatg | 10: GCS 26:Temp | [31: Weight ine 17: MAP | |8: DiasABP| |25: SysABP HR
mr:0.9118| | mr: 0.883 | [mr:0.8053| [mr:0.7767| |mr:0.6915| |mr:0.5452| [mr:0.5095( |mr:0.2141| |mr:0.2054( [mr:0.2052| |mr:0.1984

@ Get a few important variables, e.g., weight, arterial pH, temperature, and
respiration rate, etc.

Histograms of of hidden state decay for mortality prediction on PhysioNet dataset

100
Cholesterd! $7: Tr¢ponird 38: Trgponinf |3: Aifumin o:hip 1: T 2: hsT 5: Biljubin] [16: Lctate] | 24: 202 30: fvBC
1% foogod fmr: dgosay fmr: 90231 fmr: gpo1si fmr: gosssy fmr: gesss] fmr: desssi fmr: dossay fmr 7091 fmr: 97051 fmryddos32
10
11: Gjicos 194Na 18Mg 12: §co3 4: JUN Crejtining P2: Pijtelet: 19 K 13: et 21: §a02 | F20: ApCO2
10°tme: cogosd kmr: dosos] fmr: 49507 [mr: 9507 Fmr: @046 fmr g@loa3] Fmr. gllaaso Emr: Q@477 [mcale33s]{ Fmr gg158{ Emr ge157
10
32{pH 9: fo2 3: RefpRatd | 10:fCs 26: femp § [31: eight] { 29: §rine 17:f1ap 1 [8: DisaBP] [25: SpsasP! 1afHR
1% e @81181 Frggligs3 | e 531 fmr: 7671 Forgheo151 fmr 21 for @ogoesi for 411 fmr: €054{ fmr: 0521 fmr 4.

=3 03 03 03 63 03 03 03 -03 03 03 03 63 03 03 03 03 03 03 03 03 03

@ Parameters related to variables with smaller missing rate are more spread out.
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge
Outline

© Lecture 2: Challenges and Solutions of DL for Health Care

@ Challenge 3 - Incorporation of Domain Knowledge
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge

DEEP COMPUTATIONAL PHENOTYPING

Q APy ¢

Zhengping Che David Kale Wenzhe Li Taha Bahadori

Che et al, Deep Computational Phenotyping. Proceedings of the 21st ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (SIGKDD), 2015.

90
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Challenge 3 - Incorporation of Domain Knowledge
Label Sparsity and Structured Domain Knowledge

@ Many diagnoses occur in < 1% of patients.
How do we handle sparsity in our labels?

@ Ontologies (e.g., ICD-9 diagnostic codes) describe relationships between
diseases.
How can we incorporate (structured) domain knowledge?

@ Solution: Multi-task net + Graph Laplacian regularization.

Labels

Respiratory
IPneumuma I I Infections I I
wio oo Cardiovascular
Y % % % Tree-based Co-occurrence
Our solutions priors priors

ICML2017 - Deep Health August 5, 2017 82 / 124



Lecture 2: Challenges and Solutions of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge

Multi-task Neural Nets + Graph Laplacian Regularization
[Che et al., 2015]

Assume:

o K outputs (labels) with parameters {3}/, B € RP"
o Label similarity matrix A € RE*E where A;; € [0, 1].

Define Graph Laplacian matrix L = C' — A with C a diagonal matrix
Chi = S8 _, Agpr, then

T _ B — B2
tr(8 LB) = Zlgk,k’g[( Apw 1Br — Br iz
where tr(-) represents the trace operator.

Regularized loss function for supervised training of multi-task neural
network:

N K
== [yzk log (B hy) + (1 — yir,) log(1 — o(B{ hy)) +gtr(5TLﬁ)

1=1 k=1
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge

Experiment Results

Impact of priors on phenotype classification

PICU data (AUROC across 67 labels and 19 categories from ICD-9 codes)

[

[

Tasks [

No Prior

Co-Occurrence

ICD-9 Tree

l

Subsequence

All
Categories
Labels

0.7079 £ 0.0089
0.6758 £ 0.0078
0.7148 +0.0114

0.7169 + 0.0087
0.6804 £ 0.0109
0.7241 4+ 0.0093

0.7143 £ 0.0066
0.6710 £ 0.0070
0.7237 £+ 0.0081

Episode

All
Categories
Labels

0.7245 £+ 0.0077
0.6952 £ 0.0106
0.7308 £ 0.0099

0.7348 + 0.0064
0.7010 4 0.0136
0.7414 4+ 0.0064

0.7316 £ 0.0062
0.6902 £ 0.0118
0.7407 £ 0.0070
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge

MED2VEC: MULTI-LAYER REPRESENT ATION
LEARNING FOR MeDICAL CONCEPTS

E. Choi, M. T. Bahadori, €. Searles, C. Coffey, M. Thompson, J. Bost, J.
Tejedor-Sojo, J. Sun, (2016)

Multi-layer Representation Learning for Medical Concepts

\@},67
A L nn
- Sunl-ab Children’s
~ Healthcare of Atlanta

KDD’16
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Challenge 3 - Incorporation of Domain Knowledge
Med2Vec: two-layered representation

learnin
e Abstraction in patient récords

2. Sequential relation
N

Fever Chest X-ray

Pneumonia

1. Co-occurrence

o Objective function: the sum of
1. Negative intra-visit SKip-gram

o Because SKip-gram objective function is to be
maximized

2. Inter-visit multi-label classification loss
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Lecture allenges and Solutions of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge

Med2Vec encoding is well aligned with medical Knowledge

® Infectious And Parasitic Diseases Diseases Of The Nervous System And Sense Organs
® Neoplasms Discases Of The Circulatory System
Endocrine, Nutritional And Metabolic Diseases, And Immunity Disorders Diseases Of The Respiratory System
® Discases Of The Blood And Blood-Forming Organs ® Discases Of The Digestive System
® Mental Disorders ® Discases Of The Genitourinary System

Heart-related
(dysrhythmia, tachycardia, etc.)

Eye-related
A (cataract, glaucoma,
Kidney Discasc . d - etc.)
.. & Hypertension - -
. 2 -
. . ' Malignant Skin Neoplasms

Blood-related
(Thrombocytopenia, Neutropenia, Anemia)
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge

GRAM: GRAPH-BASED ATTENTION MODEL
FOR HEALTHCARE REPRESENTATION LEARNING

180

_—
Edward Choi Taha Bahadori Le Song Buzz Stewart
G @@Dlogo@{?
“Gelh || o L%‘ Sutter Health
KDD’17
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge

NJIV\IVI. LUl 11 ILHI CoOLCIILAULIvVIIO VI

medical codes leveraging medical

ontologies
o Method: Generate a medical code representation vector
by combining the representation vectors of its ancestors
using the attention mechanism

Attention ot
Knowledge DAG . Predictive Model
generation
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LCar==mmmeo ~0qi X €q \
.~ / \ P s

’\Cb: (OREN / \
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i / 7T agixeg K -
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Embedding matrix G
Model structure of GRAM
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge

Predictive Model

Knowledge DAG ;‘[‘;’r‘:‘?:n .
o GRAM algorithm
X e,
e (A . / R
Tl e N 2 ;
e SO\ Weightedsum |
By x¢ € {0,111
‘ pr- |

Embedding matrix G

exp(f(e;, ej)) N e
Ajj = ——————————————— h ej,ej) = u, tanh(W +b
| S eneey Where Jlene) = tanhWal o b
Attention weights are generated for all pairs of basic embeddings e; and its ancestors e;.
8i = Z aijej,
2 JeA(D)
Final representation g; is the weighted sum of attention weights and basic embeddings.
3 V1,V2,...,V; = tanh(G[xq, X2, ..., X])
Sequence of visit representations are obtained using the Embedding matrix G.
hy,hy, ..., hy = RNN(vy, va, ..., v, 0p),
4 ’}7[» = 3‘(\:+1 = Softmax(Wht + b),
Performing sequential diagnoses prediction, outcomes are generated by RNN and
Softmax.
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge

GRAM provide accurate prediction

GRAM shows better predictive performance under data

constraints
HF prediction using varying sizes of training data
-©-GRAM+ -B-GRAM RandomDAG
>RNN -%RNN+ -©-SimpleRollUp —+RollUpRare

0.9

0.7
0% 20%  40% 60%  80% 100%

Percentage of the training data used
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ns of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge

e 2: Challenges and Solu

GRAM learns representations well
aligned with knowledge ontology

Complications of surglcal© Gastroduodenal ulcer

procedures or medical care

.
. .
° . . Fracture of lower limb
. Complication of device; implant or graft
° .
. o © .
Peri-; endo-; myocarditis; . @ neumonia
cardiomyopathy @) Deficiency and other anemia @ P
Other fractures (ribs, pelvis)
H jon wi ° ° o> Osteoarthritis
ypertension with . . X ]
complications_and *

secondary
Other hereditary, degenerative

.
.
hypertension Other circulatory disease
nervoussystem conditions
Fracture of humerus,
Other upper o racture of radius & ulna

respiratory infections

Other complications %
of pregnancy Otitis media O
and related conditions .
Other fracture of upper limb

Other viral infections
Other female . ® “

Genitourinary symptoms
Conitouinay SIS eri dsorders
conditions

Other unspecified benign neoplasm

Retinal detachments; defects;
vascular occlusion; retinopathy

Scatterplot of GRAM representations
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Lecture allenges and Solutions of DL for Health Care Challenge 3 - Incorporation of Domain Knowledge

Med2Vec encoding is well aligned with medical Knowledge

® Infectious And Parasitic Diseases Diseases Of The Nervous System And Sense Organs
® Neoplasms Discases Of The Circulatory System
Endocrine, Nutritional And Metabolic Diseases, And Immunity Disorders Diseases Of The Respiratory System
® Discases Of The Blood And Blood-Forming Organs ® Discases Of The Digestive System
® Mental Disorders ® Discases Of The Genitourinary System

Heart-related
(dysrhythmia, tachycardia, etc.)

Eye-related
A (cataract, glaucoma,
Kidney Discasc . d - etc.)
.. & Hypertension - -
. 2 -
. . ' Malignant Skin Neoplasms

Blood-related
(Thrombocytopenia, Neutropenia, Anemia)
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RGN R @ B S EESEN ST [T atT ER T A DI MR (T s FET . WEETCM  Challenge 3 - Incorporation of Domain Knowledge

GRAM: Graph-based Attention Model for
Healthcare Representation Learning

. Electronic
Medical
ontology GRAM rzgfftfs

e Robust representation against data insufficiency
o Interpretable: Well aligned with medical Knowledge

=} = =
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Outline

© Lecture 2: Challenges and Solutions of DL for Health Care

@ Challenge 4 - Interpretable Machine Learning
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning

Deep Learning as Blackbox

If the Al is ‘black-boxed, it's hard to
see what factors are determining the
outcome and direction of the Al
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning

Importance of Explainable Artificial Intelligence - |
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning

Importance of Explainable Artificial Intelligence - |
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Lecture 2: Challenges and Solutions of DL for Health Care

Challenge 4 - Interpretable Machine Learning
Importance of Explainable Artificial Intelligence - Il

How can | trust any machine learning algorithm? [Ribeiro et al, 2016]

(a) Husky classified as wolf (b) Explanation

ICML2017 - Deep Health

August 5, 2017

PN G4
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning

Interpretable Model is Necessary

Interpretable predictive models are shown to result in faster adoptability of
machine learning models.

@ Simple and commonly use models @ Deep learning solutions
@ Easy to interpret, mediocre @ Superior performance, hard to
performance explain

Can we learn interpretable models with robust prediction performance?
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Challenge 4 - Interpretable Machine Learning
Ongoing Work on Explainable Machine Learning Models

Direct Interpretation
o [Garson, 1991]: estimating feature importance directly from network
weight connections
@ [Hechtlinger, 2016]: computing output gradients with respect to input
features
o [Itti et al., 1998; Mnih et al., 2014; Xu et al., 2015]: attention models
Indirect Interpretation
@ [Provost et al., 1997]: sensitivity analysis of feature contributions to a
neural network’s output
o [Ribeiro et al., 2016]: local interpretability for black-box models
@ [Che et al., 2016b]: mimicking the blackbox through the prediction
scores
@ [Maaten and Hinton, 2008; Simonyan et al., 2013; Yosinski et al.,
2014; LeCun et al., 2015; Mnih et al., 2015; Mahendran and Vedaldi,
2015]: visualizing the hidden units
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning

INTERPRETABLE DEEP MODELS FOR ICU
OUTCOME PREDICTION

Zhengping Che Sanjay Purushotham  Robinder Khemani
Chvldrens
l |S‘ Hospital »
LOS ANGE[ES

Che et al, Interpretable Deep Models for ICU Outcome Prediction. of the American
Medical Informatics Association Annual Symposium (AMIA), 2016.
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(WS (TR R @ BN EEIET STVl ER M DI MR (Tal s 11 MEETCI  Challenge 4 - Interpretable Machine Learning

Interpretable Mimic Learning Framework [Che et al.,
2016b]

@ Main ideas:
e Borrow the ideas from knowledge distillation [Hinton, et al., 2015]
and mimic learning [Ba, Caruana, 2014].
o Use Gradient Boosting Trees (GBTSs) to mimic deep learning
models.

@ Training Pipeline:

03/07)02)

O 1@
@_.

Target@—' Deep @
Learning
Input @—,—» Model —»@
]
@ Benefits: Good performance, less overfitting, interpretations.
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Lecture 2: Challenges and Solutions of DL for Health Care

Quantitative Evaluation

AUROC score of prediction on patients with acute hypoxemic respiratory failure.

Challenge 4 - Interpretable Machine Learning

Mortality Ventilator Free Days
Baselines - ] . ]
AT TN |
Models
Mimic Model ® Mimic = Mimic
055 065 075 055 065 075

AUROC score of 20 ICD-9 diagnosis category prediction tasks on MIMIC-III dataset.

0.9

0.7
0.5

001 140 240 280 290 320 390 460 520
| | | | | |
139 239 279 289 319 389 459 519 579
Ml W2 #3 M4 HS W6 K7 H8 M9

ICML2017

0.8
||| ||| il ol “ || ||
| ] |

m Best Simple Baseline
M Best Multimodal Model
M Best Mimic Model

‘ " | |
797 800 v E

580 630 680 710 740 780 790
| | | | | | |
629 677 709 739 759 789 796 799 999
#10 H#11 H12 #13 #14 #1S #16 #17 #18 #19 #20

August 5, 2017

Codes Codes

- Deep Health
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning
Model /Feature Interpretation

Partial dependency plot for mortality prediction on patients with acute
hypoxemic respiratory failure.

0.08

0.06 @ pH value in blood should stay in a normal range
0.04 around 7.35-7.45.

0.02

0.00 @ Our model predicts a higher mortality change
o 7555 s, when the patient pH value below 7.325.,

PH-D1

Most Useful Decision Trees for ventilator free days prediction.

100.0%
m Useful features:
[LIS-DO <=2. 8333] [Del(aPF D2 = 89 042]
S=824%

@ Lung injury score

éoaA;esas] [Paogggjo:/uso,sj [LeaksF’irfs:.z%:GGQ] o Oxygenation index

\
/

BE-D1 <=-5.9335 MAP-D1
S =64.8% S=
% =0.400 | (% =0.762) (% =0.846
S$=6.0% | [S=588%| | S=35%
V=-0.1921 V=0.204 ) (V=0.2104
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning

RETAIN: INTERPRETABLE DEEP
LEARNING MOPpEL

. :
Edward Choi  Taha Bahadori Andy Schuetz Buzz Stewart
Georgia GCollege of "
Tech | Gempiing % Sutter Health
Computational Sci Enginee:

Choi, Edward, et al. 2016. “RETAIN: An Interpretable Predictive Model for Healthcare
Using Reverse Time Attention Mechanism.” In NIPS
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning

Regular Machine Translation Neural Attention Mechanism
WRARAAE FHERAE T 5%, WRIRATE T HEIRTG T 5%,
PRI RE 7E BRI I AR . PRATRESE R I A .

It is amazing what you can accomplish It is amazing what you can accomplish
if you do not care who gets the credit  if you do not care who gets the credit

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. 2014.
“Neural Machine Translation by Jointly Learning to Align and Translate.”
arXiv [cs.CL]. arXiv. http://arxiv.org/abs/1409.0473.
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning

RETAIN: REverse Time AttentloN model

—— =y

Importance of
each visits

codes within

visits

t
Importance of [
|
|
|

P

Embedding of
input features

Choi, Edward, et al. 2016. “RETAIN: An Interpretable Predictive Model for Healthcare
Using Reverse Time Attention Mechanism.” In NIPS
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning

v; = Ex;

1 | Multi-hot representation of the visit is linearly projected by the

embedding matrix E.
€i,8i—1,.--,81 = RNNa(vi, Vi_1,...,v1),

2 a1, Qz,...,q; = Softmax(w] [g1, 82, - - -, 8] + ba)
RNN, generates «;, the scalar attention weight for the i-th visit. The
visit representations v;’s are fed to the RNN,, in reverse order.
h;,h;_y,...,hy = RNNg(v;,vi_1,...,v1)

3 ,Bj:tanh(Wth+b5) for j=1,...,¢

RNNpg generates fB;, the vector attention weight for the medical codes

in the i-th visit. v;’s are fed to the RNNpg in reverse order as well.

ci=) a;if;ov;

4 =

The attention weights a; and B; are combined with the visit
representation v; to obtain the context vector c;.

¥: = Softmax(Wc; + b)

Using the context vector ¢;, we make the final prediction.
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning

Interpretation of RETAIN model

1.5 ) SD: disorder CD: Cardiac dysrhythmia HVD
= () HF risk: 0.2474 ESL: Excision of skin lesion CA: Coronary atherosclerosis cp CD
2 HVD: Heart valve disorder @ "
2 AA: Antiarrhythmic medication ""[i“l‘_’l}e
§ AC: Anticoagulant medication o o . y
3 OIsp SD,ESC gp, SD, EST. SD, ESL, SD ) » Time

0.5 U sb

1.5 .
= | (b)HF risk: 0.0905
=}
g
3 r
T [P R o cp
£, CD Ti
S SD, ESC. ST 5 g ime
© sD s ESEP -

-0.5 SD

1.5 .
a (c) HF risk: 0.2165 cp HYD
15 [e))
& CA
=
=]
E cb cp cp .
S 0 ST £S AKX, AT 7 = » Time
S SD SDy st D; SD, EST. SD, ESL, A%DC ERAL Awkﬁ AS

-0.5 - e " sp

LAGE 57 5 T 7T 7719 7 7% 5%
Y 342 350
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Lecture 2: Challenges and Solutions of DL for Health Care Challenge 4 - Interpretable Machine Learning

Heart Failure Results

Negative Log Likelinood on Test Set Classification AUC

0.34

Negative Log Likelihood

0.24

Logistic  MLP  RNN RNN+ay, RNN+ag RETAIN Logistic  MLP  RNN  RNN+a, RNN+ap RETAIN
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Challenge 4 - Interpretable Machine Learning
Retain: Interpretable Deep learning model

x, e Challenge: Deep learning models are often
difficult to interpret
¥y Y

e RETAIN is a temporal attention model
on electronic health records

><;\—) — Great predictive power

— Good. interpretation

Choi, Edward, et al. 2016. “RETAIN: An Interpretable Predictive Model for Healthcare
Using Reverse Time Attention Mechanism.” In NIPS
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Future Directions

Modeling heterogeneous data sources

AR
87
P -
-— \\
-

Clinical notes -Omic data sensor Medical imaging
More complex output

423

Clinical
- question & answer

Model interpretation
il

Liu & Sun ICML2017 - Deep Health August 5, 2017
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Future Directions
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Future Directions

Contacts and Additional Information

i) L.
e |
/] Ny,
A A
Yan Liu Jimeng Sun
yanliu.cs@usc.edu jsun@cc.gatech.edu

Tutorial websites: https://tinyurl.com/y7wuk9xt
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